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Abstract

Let X and Y be two n × n Hermitian matrices. In the article Proof of a
conjectured exponential formula (Linear and Multilinear Algebra (19) 1986,
187-197) R. C. Thompson proved that there exist two n× n unitary matrices
U and V such that

eiXei Y = ei UXU
∗+V BV ∗ .

In this note we consider extensions of this result to compact operators as well
as to operators in an embeddable II1 factor. 1
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1 Introduction

In his 1986 paper [14], studying the product eiXeiY (with X, Y Hermitian matrices)
R. C. Thompson considered the analytic map ξ(w) = eiXeiwY defined for some
w ∈ C in a neighborhood of the unit interval. Using perturbation theory techniques,
he derived a series of inequalities concerning the eigenvalues of X, Y and those of
Z = log(eiXeiY ). The family of inequalities found by Thompson happened to relate
to those proposed by R. Horn [7] as the complete solution of the following (seemingly)
elementary problem: find necessary and sufficient conditions on the eigenvalues of
the Hermitian matrices A,B,C in order to have UAU∗ + V BV ∗ = C for some
unitary matrices U and V . By that time, V. B. Lidskii had recently published the
paper [12], announcing the proof of Horn’s conjecture (see Appendix A below for
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a brief exposition on the subject). Thus, Thompson’s computations lead him to
conclude that there existed unitary matrices U, V such that Z = UXU∗ + V Y V ∗.
However, details on Lidskii’s proof never saw the light, and for a very long time,
Horn’s conjecture remained open and consequently, Thompson’s result was gently
archived. It was not until twelve years later that a proof of Horn’s conjecture was
given in two exceptional papers, the first one due to A. Klyachko [9] and the second
one due to A. Knutson and T. Tao [10].
Later, Horn’s result was extended to the infinite dimensional setting by Bercovici
et. al. in two papers [2, 3] that deal with the case of operators in an embeddable II1
factor and with compact operators respectively. Then, it is only natural to ask for
extensions of Thompson’s formula on adequate infinite dimensional settings. In this
paper, we attempt to provide generalizations to the setting of compact operators,
and to the setting of finite von Neumann algebras. Our motivation stems for the
applications of Thompson’s identity to the study of the geometry of the Grassman-
nian manifold when it is endowed with a left-invariant metric induced by a unitarily
invariant norm [13].
What follows are the detailed contents of this paper: Section 2 establishes the back-
ground and notation used throughout. In Section 3 we prove that, given x, y compact
Hermitian operators on a separable Hilbert space, there exist unitary operators u, v
and an isometry w such that

eiwxw
∗
eiwyw

∗
= eiuwxw

∗u∗+ivwyw∗v∗ .

This is the content of Theorem 3.2. The strategy adopted for our proof is the fol-
lowing: cut x, y, z with adequate finite rank projections, apply Thompson’s formula
to produce sequences (unxu

∗
n), (vnyv

∗
n). Then, the main task is to extract conver-

gent subsequences of the exponents obtained. The isometry w of the above formula
is there to compensate for the possible variations on the kernels of the operators
involved: recall one of the consequences of a result by D. Voiculescu [15], that tells
us that the unitary orbit {uxu∗} of a bounded operator x is closed if and only if x
is a finite rank operator. It is however unclear if the isometry w introduced is an
artifact due to the strategy of proof we adopted, or there is something deeper going
on underneath.
Regarding the final sections of the paper, in Section 4 we prove that in an adequate
von Neumann algebra (i.e., in an embeddable II1 factor), it is possible to obtain
an approximate, but uniform, Thompson formula: the precise statement is given
in Theorem 4.4. Here, we use the existence of a convenient matrix approximation,
Thompson’s formula in finite dimensions, and the extension of Horn’s result to the
setting of embeddable II1 factors. We finish with an Appendix that contains a brief
survey of Horn’s conjecture, its solution, and recent generalizations to the settings
considered here.

2 Preliminaries

Let H be a complex separable and infinite dimensional Hilbert space. In this paper
B(H), B0(H) and Bf (H) stand for the sets of bounded linear operators, compact
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operators and finite rank operators in H respectively. The unitary group of B(H)
is indicated by U(H). If x ∈ B(H), then ‖x‖ stands for the usual uniform norm,
and we will use | · | to indicate the modulus of an operator, i.e. |x| =

√
x∗x. We

indicate with B(H)h (resp. B0(H)h) the real linear space of Hermitian elements
(resp. Hermitian compact elements) of B(H). Given η, ζ ∈ H, by means of η⊗ ζ we
denote the rank one operator defined by η ⊗ ζ(ξ) = 〈 ξ, ζ 〉 η.

On the other hand, throughout this paper Mn(C) denotes the algebra of complex
n×n matrices, Gl (n) the group of all invertible elements ofMn(C), U(n) the group
of unitary n× n matrices, and H(n) the real subalgebra of Hermitian matrices.

Given x ∈ B(H) (or T ∈ Mn(C)), R(x) the range or image of x, N(x) the null
space of x, and σ (x) denotes the spectrum of x. If x is normal (i.e. xx∗ = x∗x),
then Ex(Ω) denotes the spectral measure of x associated to the (measurable) subset
Ω of the complex plane.

Let us give a precise statement of Thompson’s formula:

Theorem (Thompson). Given X, Y ∈ H(n), there exist unitary matrices U, V ∈
Mn(C) such that

eiXei Y = ei(UXU
∗+V BV ∗) .

2.1 Some preliminaries on II1 factors

Throughout this section, Rω denotes the ultrapower the hyperfinite II1 factor, and
M denotes any II1 factor that can be embedded in Rω. We are going to use the
Greek letter τ to denote the normalized tracial state of M. Given an Hermitian
element a ∈M, it can be written as

a =

∫ 1

0

λa(t) de(t) ,

where λa is a non-increasing right continuous function, and e(·) is a spectral measure
on [0, 1) such that τ(e(t)) = t.

One of the characterizations of embeddable factors is the existence of a “sequence of
matricial approximations” for any finite family of Hermitian elements. This notion
is described more precisely in the following theorem:

Theorem 2.1. Let a1, . . . , ak be Hermitian elements of Rω. Then, there are integer
numbers 1 ≤ n1 < n2 < . . . and Hermitian matrices X

(m)
1 , . . . , X

(m)
k ∈ Mnm(C)

such that for every non-commutative polynomial p it holds that

τ
(
p(a1, . . . , ak)

)
= lim

m→∞
τnm
(
p(X

(m)
1 , . . . , X

(m)
k )

)
where τnm is the normalized trace of Mnm(C). Moreover, the matrices can be taken

so that for each j ∈ {1, . . . k} we have that ‖X(m)
j ‖ ≤ ‖aj‖ for every m ∈ N.
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Given a matrix M ∈Mn(C) whose eigenvalues arranged in non-increasing order are
denoted by λ1, . . . , λn, let λM denote the real valued function defined in [0, 1) in the
following way:

λM(t) =
n∑
j=1

λjχ[ j−1
n
, j
n

) .

With this notation, the following result is a direct consequence of Theorem 2.1, and
the reader is referred to [2] for a detailed proof:

Corollary 2.2. Let a ∈ M be an Hermitian element, and {X(m)}m∈N a sequence
of matricial approximations of a. Then, λX(m) −−−→

m→∞
λa almost everywhere.

Finally, we mention the following result valid in every finite factor:

Proposition 2.3 (Kamei [8]). Let a and b be Hermitian elements of a finite factor
M. Then, the following statements are equivalent:

1. λa = λb;

2. a belongs to the norm closure of the unitary orbit of b.

3 Thompson-type formulae for compact opera-

tors

Throughout this section, given a compact operator x, the eigenvalues of x are ar-
ranged in non-decreasing order with respect to their moduli, i.e., if i ≤ j then
|λi(x)| ≥ |λj(x)|.

Theorem 3.1. Given x, y ∈ B0(H)h, there exist unitary operators uk and vk ∈
B(H), for k ∈ N, such that

ei xei y = lim
k→∞

ei ukxu
∗
k+i vkyv

∗
k (1)

Proof. Let x = u|x| and y = v|y| be polar decompositions of x and y, and

|x| =
∑
j∈N

λj(|x|)βj ⊗ βj and |x| =
∑
j∈N

λj(|y|)ζj ⊗ ζj .

spectral decompositions of |x| and |y| respectively. Recall that the eigenvalues are
arranged in non-increasing order. Define

xk =
k∑
j=1

λj(|x|)βj ⊗ (uβj) and yk =
k∑
j=1

λj(|y|)ζj ⊗ (vζj) ,

and Sk = R(xk) + R(yk). Then xk(Sk) ⊂ Sk and yk(Sk) ⊂ Sk. So, xk, yk ∈ B(Sk) '
Mn(C) (where n = dim(Sk)). On the other hand,

eixeiy = lim
k→∞

eixkeiyk . (2)
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Due to Thomspon’s formula for matrices, there exist uk, vk unitary linear transfor-
mations in Sk (which means that uku

∗
k = pSk and vkv

∗
k = pSk , where pSk denotes the

orthogonal projection onto Sk) such that

ei xkei yk = ei ukxku
∗
k+i vkykv

∗
k . (3)

We can extend uk, vk ∈ B(Sk) to the unitaries ũk = uk + pS⊥k and ṽk = vk + pS⊥k
∈ B(H). Then from the equality (3) valid in Sk we get the following in B(H)

ei xkei yk = ei ũkxkũ
∗
k+i ṽkyk ṽ

∗
k . (4)

Since (ũkxũ
∗
k + ṽkyṽ

∗
k)− (ũkxkũ

∗
k + ṽkykṽ

∗
k)→ 0, using (2) we get

ei (ũkxũ
∗
k+ṽkyṽ

∗
k) − ei xei y ‖ · ‖−−−→

k→∞
0.

�

Since the unitary orbit of a fixed operator in B(H) is not closed in general, to avoid
the limit in (1) we have to pay some price. The following theorem follows this path.

Theorem 3.2. Given x, y ∈ B0(H)h, there is an isometry w ∈ B(H), and unitary
operators u and v such that

ei wxw
∗
ei wyw

∗
= ei u(wxw

∗)u∗+i v(wyw∗)v∗ .

Remark 3.3. Another way to state the theorem follows: there is a bigger Hilbert
space K containing H such that the extensions x̂, ŷ ∈ B(K) defined by

x̂ =

(
x 0
0 0

)
H
K	H , ŷ =

(
y 0
0 0

)
H
K	H

satisfy the identity ei bxei by = ei (ubxu∗+vbyv∗) , for some unitary operators u and v acting
on K. N

Let us roughly sketch the idea behind the proof. We know that there are unitary
operators un, vn ∈ U(H) such that

eixeiy = lim
n→∞

ei(unxu
∗
n+vnyv∗n) .

Let zn = unxu
∗
n + vnyv

∗
n. Extending to a bigger space K the operators zn, un,

vn, x and y as in the previous remark, we can conjugate the sequence {ẑn}n∈N
with unitary operators wn acting on K so that ebzn = ewnbznw∗n , and the modified
sequence {wnẑnw∗n}n∈N has a convergent subsequence. If ŝ denotes the limit of that
subsequence, provided dimK 	 H = ∞, we can always find two unitary operators
û0 and v̂0 such that

ŝ = û0 x̂ û
∗
0 + v̂0 ŷ v̂

∗
0.

As this limit ŝ satisfies that eibxeiby = eibs, this would complete the proof. Since the
proof of Theorem 3.2 is rather long, some technical parts are included in the next
three lemmas:
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Lemma 3.4. Let {an}n∈N be a bounded sequence of finite rank normal operators,
and let pn denote the orthogonal projection onto R(an). If there exists a finite rank

projection p such that pn
‖·‖−−−→

n→∞
p, then {an}n∈N has a convergent subsequence.

Proof. Since pn
‖·‖−−−→

n→∞
p, the operators sn := pnp + (1 − pn)(1 − p) converge to 1

as n → ∞. We can suppose that for every n ∈ N, sn is invertible. Note also that
pnsn = snp. For each n ∈ N, let sn = un|sn| be the polar decomposition of sn.
Then, straightforward computations show that pnun = unp. So, as the sequence
{an}n∈N is bounded, {u∗nanun}n∈N is a bounded sequence of normal operators whose
range is the finite dimensional subspace R(p). Therefore, it has a norm-convergent

subsequence. Since un
‖·‖−−−→

n→∞
1, the original sequence {an}n∈N also has a convergent

subsequence. �

Lemma 3.5. Let z ∈ B0(H)h be such that ‖z‖ ≤ π, and let {wn}n∈N be a bounded
sequence of Hermitian compact operators which satisfies:

a.) eiwn
‖·‖−−−→

n→∞
eiz;

b.) There exists n0 ∈ N and ε > 0 such that( ⋃
n≥n0

σ(wn)
)
∩
( ⋃
k∈Z,k 6=0

(2kπ − ε, 2kπ + ε)
)

= ∅

Then, {wn}n∈N has a convergent subsequence.

Proof. Since ‖z‖ ≤ π and the operators wn satisfy condition (b), there exists ε > 0
such that it is not contained neither in the spectrum of any wn nor in the spectrum
of z, and it satisfies

pn = Eewn
(
B1

(
2 sin ε

2

))
= Ewn((−ε, ε))

p = Eez
(
B1

(
2 sin ε

2

))
= Ez((−ε, ε)) ,

where Bα(ρ) denotes the ball in C of radius ρ centered at α. Standard arguments

of functional calculus imply that pn
‖·‖−−−→

n→∞
p. If log denotes the principal branch of

the complex logarithm, then

log
(
(1− pn) + pne

wn
)

= pnwn and log
(
(1− p) + pez

)
= pz.

So, pnwn
‖·‖−−−→

n→∞
pz because the sequence {(1−pn) +pne

wn}n∈N converge in the norm

topology to (1 − p) + pez, and the holomorphic functional calculus is continuous
with respect to this topology. On the other hand, if qn = 1 − pn, the sequence
{wnqn}n∈N satisfies the conditions of Lemma 3.4. Hence, it has a convergent sub-
sequence {wnkqnk}k∈N. Therefore, {wnk}k∈N converges, which concludes the proof.
�
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The next lemma is a variation of Lemma 4.3 in [3], and its proof follows essentially
in the same lines. We include a sketch of its proof for the sake of completeness.

Lemma 3.6. Let x, y ∈ B0(H)h, and suppose there exist unitary operators uk and
vk, for k ∈ N such that

s = lim
k→∞

ukxu
∗
k + vkyv

∗
k ,

for some s ∈ B0(H). Then, there exist compact operators s̄, x̄, ȳ satisfying s̄ = x̄+ȳ,
σ (s̄) = σ (s), σ (x̄) = σ (x), and σ (ȳ) = σ (y) with the same multiplicity for every
non-zero eigenvalue.

Sketch of proof. Let xk = ukxu
∗
k, yk = vkyv

∗
k, and sk = xk + yk. For each k ∈ N

consider an increasing sequence of projections {pk,n}n∈N such that dimR(pk,n) = n,

pk,n
SOT−−−→
n→∞

1, and

εn := sup
k∈N

(
‖(1− pk,n)sk‖+ ‖(1− pk,n)xk‖+ ‖(1− pk,n)yk‖

)
−−−→
n→∞

0 .

This last requirement can be achieved by choosing the projections in such a way
that they capture for each n as many eigenvectors of xk and yk as it is possible,
among those corresponding to the biggest eigenvalues (in modulus) of xk and yk.
Now, consider a fixed increasing sequence of projections {qn}n∈N such that dimR(qn) =

n, and qn
SOT−−−→
n→∞

1, and for each k ∈ N define a unitary operator wk such that

wkpk,nw
∗
k = qn .

Let s̄k = wkskw
∗
k, x̄k = wkxkw

∗
k, and ȳk = wkykw

∗
k. Straightforward computations

show that these operators satisfy the following inequalities:

‖s̄k − qns̄kqn‖ ≤ 2εn , ‖x̄k − qnx̄kqn‖ ≤ 2εn , and ‖ȳk − qnȳkqn‖ ≤ 2εn . (5)

Note that, for each n ∈ N, set {qns̄kqn : k ∈ N} is bounded, hence totally bounded.
So, the first inequality of (5) implies that the set {s̄k : k ∈ N} is totally bounded
as well. Therefore, passing to a subsequence if necessary, we may assume that the
sequence {s̄k} converges to a compact Hermitian operator s̄. The same argument
can be applied to the sequences {x̄k} and {ȳk}, and we get the operators x̄, and ȳ,
respectively. Clearly these operators satisfy

s̄ = x̄+ ȳ ,

and standard arguments of functional calculus show that σ (s̄) = σ (s), σ (x̄) = σ (x),
and σ (ȳ) = σ (y) with the same multiplicity for every non-zero eigenvalue. �

Proof of Theorem 3.2. Let z be any bounded and Hermitian operator such that
eiz = eixeiy. For simplicity, we are going to prove the alternative version of the
statement described in Remark 3.3, and without lost of generality, we are going to
assume that ‖z‖ ≤ π. Then note that, since eiz − 1 = eixeiy − 1 and the right hand
is compact, then an elementary argument using the funcional calculus of the entire
map F (λ) = (eiλ − 1)λ−1 shows that z is also a compact operator.
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By Theorem 3.1, there are unitary operators un and vn such that:

eiz = lim
n→∞

ei(unxu
∗
n+vnyv∗n) .

Let zn := unxu
∗
n + vnyv

∗
n. Since x and y are compact, there exists M > 0 big

enough such that for every j ≥ M and every n ∈ N it holds that λj(|zn|) < π.
For technical reasons, passing to a subsequence if necessary, we can assume that
{λj(zn)}n∈N converges for every j ∈ {1, . . . ,M}. Define

Ω = {m ∈ N : lim sup
n→∞

λm(|zn|) = 2kπ for some k ∈ N}

= {m ∈ N : lim
n→∞

λm(|zn|) = 2kπ for some k ∈ N}.

The second equality holds because #Ω < M . Let {ζ(n)
j }j∈N be an orthonormal basis

of H such that ζ
(n)
j is an eigenvector of λj(zn). Then

lim
n→∞

〈
|zn|ζ(n)

j , ζ
(n)
j

〉
= 2kπ for j ∈ Ω, and some k ∈ Z. (6)

Let K = H⊕H, and extend x,y, z to K as:

x̂ =

(
x 0
0 0

)
H
H , ŷ =

(
y 0
0 0

)
H
H , and ẑ =

(
z 0
0 0

)
H
H .

The unitary operators un and vn are also extended, but in this case as the identity
in the second copy of H. Denote with ûn and v̂n these extensions. With these
definitions, we get

ẑn = ûn x̂ û
∗
n + v̂n ŷ v̂

∗
n =

(
zn 0
0 0

)
H
H .

Fix an orthonormal basis {βj}j∈N of H, and define for each n ∈ N the unitary
operator wn as the unique unitary operator in B(K) that satisfies

wn(ζ
(n)
j ⊕ 0) = 0⊕ βj if j ∈ Ω ,

wn(0⊕ βj ) = ζ
(n)
j ⊕ 0 if j ∈ Ω ,

wn(ζ
(n)
j ⊕ 0) = ζ

(n)
j ⊕ 0 if j /∈ Ω ,

wn(0⊕ βj ) = 0⊕ β(n)
j if j /∈ Ω .

Consider the new sequence sn = wnẑnw
∗
n. Let p

(n)
2π , p(n)

s , pc and p0 be the orthogonal
projections such that:

R(p(n)
2π ) = span{ζ(n)

j ⊕ 0 : j ∈ Ω} ,

R(p(n)
s ) = span{ζ(n)

j ⊕ 0 : j /∈ Ω} ,
R(pc) = span{0⊕ βj : j ∈ Ω} ,
R(p0) = span{0⊕ βj : j /∈ Ω} .

Note that, for each n ∈ N, the operator sn commutes with the four projections.

Claim: there exists n0 large enough so that
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1. sn(p
(n)
2π + p0) = 0 for every n ∈ N;

2. { |snpc| }n∈N converges to an operator whose spectrum is contained in {2kπ :
k ∈ Z}.

3. There exists ε > 0 such that( ⋃
n≥n0

σ(snp
(n)
s )
)
∩
( ⋃
k∈Z,k 6=0

(2kπ − ε, 2kπ + ε)
)

= ∅ .

The first item is clear, and the second item is a direct consequence of (6). In order
to prove the third one, recall that for every j > M and every n ∈ N the moduli of
the eigenvalues λj(|zn|) are contained in (−π, π). On the other hand, we can take
n0 large enough so that the sequences {λj(zn)}n∈N for j ∈ {1, . . . ,M} are close to
their limits. Note that, for j /∈ Ω the limits are far from the integer multiples of 2π.
These facts, all together, imply (3), and conclude the proof of the claim.

Straightforward computations show that

eibz = lim
n→∞

ei(bunbxbu∗n+bvnbybv∗n) = lim
n→∞

eiwn(bunbxbu∗n+bvnbybv∗n)w∗n ,

which implies

eibz = lim
n→∞

ei(snp
(n)
s ) , (7)

because
lim
n→∞

ei(sn(pc+p
(n)
2π +p0)) = 1.

The identity (7) and the claim allow us to apply Lemma 3.5 to the sequence
{snp(n)

s }n∈N, and to obtain a convergent subsequence. Therefore, the sequence
{sn}n∈N has a convergent subsequence {snk}k∈N. Let s be its limit, that is

s = lim
k→∞

snk = lim
k→∞

wnk(ûnk x̂ û
∗
nk

+ v̂nk ŷ v̂
∗
nk

)w∗nk . (8)

Clearly, this limit satisfies the identity eibz = eis. On the other hand, if we consider
the restriction of (8) to S = R(1 − p0), then by Lemma 3.6 there are operators
s̄, x̄, ȳ ∈ B(S) which have the same non-zero eigenvalues (counted with multiplicity)
as the operators s, x̂, and ŷ. Extended as zero in S⊥ (and using this notation), s̄, x̄
and ȳ become unitary equivalent to s, x̂, and ŷ respectively. Therefore, as s̄ = x̄+ ȳ,
there exist two unitary operators u0 and v0 acting on K such that

s = u0x̂u
∗
0 + v0ŷv

∗
0.

This concludes the proof. �
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4 Thompson-type formulae for operators in an

embeddable II1 factor

Throughout this section, let M be a II1 factor that can be embedded in Rω. We
start with two technical lemmas.

Lemma 4.1. Let a, b ∈ M be Hermitian elements, and let {(A(m), B(m))}m∈N be a
sequence of matricial approximations. Then, for every polynomial p ∈ C[z, z̄]

τ
(
p(eia · eib)

)
= lim

m→∞
τnm
(
p(eiA

(m) · eiB(m)

)
)
.

Proof. It is a straightforward consequence of Theorem 2.1. �

Let us recall the definition of decreasing rearrangements of functions: given a mea-
surable function f : [0, 1) → R, its decreasing rearrangement f ∗ : [0, 1) → R is
defined by

f ∗(t) = inf{s : |{x : f(x) > s}| ≤ t} .

Remark 4.2. Note that, given two functions f, g : [0, 1) → R, if they satisfy
|{x : f(x) > s}| = |{x : g(x) > s}| for every s ∈ R, then f ∗ = g∗. The reader is
referred to [1] for more details on decreasing rearrangements. N

Lemma 4.3. Let f, g : [0, 1) → R be bounded non-increasing functions such that
‖g‖∞ ≤ π, and for any interval I of the unit circle S1 it holds that∫ 1

0

χI(e
if(t)) dt =

∫ 1

0

χI(e
ig(t)) dt . (9)

Then, there is a function ḡ : [0, 1)→ R such that eif(t) = eig(t), and ḡ ∗ = g.

Proof. Let Ω = {t ∈ [0, 1) : eif(t) = −1}, and divide it in two measurable sets Ω+

and Ω− such that

|Ω+| = |{t ∈ [0, 1) : g(t) = π}| and |Ω−| = |{t ∈ [0, 1) : g(t) = −π}| .

This is possible because |Ω| = |{t ∈ [0, 1) : eig(t) = −1}| by (9). Define ḡ : [0, 1)→ R
as follows:

ḡ(t) :=


f(t)− 2kπ if f(t) ∈

(
(2k − 1)π, (2k + 1)π

)
;

π if t ∈ Ω+;

−π if t ∈ Ω−;

.

The function ḡ clearly satisfies the identity eif(t) = eig(t). So, for every arc I of the
unit circle ∫ 1

0

χI(e
ig(t)) dt =

∫ 1

0

χI(e
if(t)) dt ,

and therefore ∫ 1

0

χI(e
ig(t)) dt =

∫ 1

0

χI(e
ig(t)) dt . (10)
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The next (and last) step, is to prove that ḡ∗ = g∗ = g (almost everywhere). The last
identity holds because g is decreasing and the decreasing rearrangements considered
here are with respect to the Lebesgue measure. To prove that ḡ∗ = g∗, it is enough
to verify that for every s ∈ R

|{x : ḡ(x) > s}| = |{x : g(x) > s}| . (11)

Note that, by construction, ‖ḡ‖∞ ≤ π. Hence, ‖ḡ‖∞ = ‖g‖∞ by (10). Moreover,
also by construction, it holds that

|{x : ḡ(x) = −π}| = |{x : g(x) = −π}|.

Therefore, the equality in (11) is apparent if s > ‖g‖∞ or s ≤ −π. On the other
hand, if −π < s ≤ ‖g‖∞, let I = {eit : s < t ≤ π}. Then

|{x : ḡ(x) > s}| =
∫ 1

0

χI(e
ig(t)) dt− |{x : ḡ(x) = −π}|

=

∫ 1

0

χI(e
ig(t)) dt− |{x : g(x) = −π}|

= |{x : g(x) > s}| .

This concludes the proof. �

Theorem 4.4. Given a, b ∈ M Hermitian, there are two sequences of unitaries
{un}n∈N and {vn}n∈N such that

eia eib = lim
n→∞

ei(unau
∗
n+vnbv∗n) ,

where the convergence is with respect to the operator norm topology.

Proof. Let {A(m)}m∈N and {B(m)}m∈N be sequences of matricial approximations of
a and b respectively. By Thompson’s theorem, there are unitary matrices Um y Vm
such that for each m ∈ N

eiA
(m)

eiB
(m)

= ei(UmA
(m)U∗m+VmB(m)B∗m) .

Define Dm = UmA
(m)U∗m+VmB

(m)B∗m. By Theorem A.1, the functions λA(m) , λB(m) ,
and λD(m) satisfy equation (16). Since the sequence of non-increasing functions
{λD(m)}m∈N is uniformly bounded, by Helly’s selection theorem, there is a subse-
quence of this sequence that converges for all but almost countable many points
t ∈ [0, 1). To simplify the notation, let us assume that the original sequence con-
verges in this way, and let f be its limit. This limit is also non-increasing and
bounded. Moreover, as λA(m) , λB(m) , and λD(m) satisfy (16) for every m ∈ N, by the
dominated convergence theorem, λa, λb and f also satisfy those inequalities. Then,
there are operators a′, b′ such that

λa′ = λa , λb′ = λb , and λa′+b′ = f (12)
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Let c ∈ M such that eia eib = eic and ‖c‖ ≤ π. Given a polynomial p, on one hand
by Lemma 4.1:

lim
m→∞

τnm
(
p(eiA

(m) · eiB(m)

)
)

= τ
(
p(eia · eib)

)
= τ
(
p(eic)

)
=

∫ 1

0

p(eiλc(t)) dt . (13)

On the other hand, by the dominated convergence theorem, we obtain

lim
m→∞

τnm
(
p(eiA

(m) · eiB(m)

)
)

= lim
m→∞

τnm
(
p(eiD

(m)

)
)

= lim
m→∞

∫ 1

0

p(eiλD(m) (t)) dt

=

∫ 1

0

p(eif ) dt . (14)

Therefore, (13) and (14) imply that for every polynomial p∫ 1

0

p(eiλc(t)) dt =

∫ 1

0

p(eif(t)) dt .

Using standard arguments we obtain the same result replacing the polynomials by
characteristic functions of arcs. Then, by Lemma 4.3, there is a function λ̄c such
that eif = eiλc , and λ̄∗c = λc. Suppose that

c =

∫ 1

0

λc(t) de(t) ,

and define

c′ =

∫ 1

0

λ̄c(t) de(t) and d =

∫ 1

0

f(t) de(t) .

Then, eic
′

= eid, λd = f , and λc′ = λc. Combining these facts with equation (12),

and using Proposition 2.3, we get that there are sequences {u(a)
n }n∈N, {u(b)

n }n∈N,

{u(c)
n }n∈N, and {u(d)

n }n∈N of unitary elements of M so that

d = lim
n→∞

(u(d)
n ) (a′ + b′) (u(d)

n )∗ ,

a′ = lim
n→∞

(u(a)
n ) a (u(a)

n )∗ ,

b′ = lim
n→∞

(u(b)
n ) b (u(b)

n )∗ , and

c = lim
n→∞

(u(c)
n ) c′ (u(c)

n )∗ .

Finally, if we define un = u
(c)
n u

(d)
n u

(a)
n y vn = u

(c)
n u

(d)
n u

(b)
n we get

eic = lim
n→∞

ei(unau
∗
n+vnbv∗n) ,

which concludes the proof. �
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A Brief review on Horn’s conjecture

One of the most challenging problems in linear algebra has been to characterize the
real n-tuples α, β, and γ that are the eigenvalues of n × n Hermitian matrices A,
B, and C such that C = A + B. In his remarkable 1962 paper [7], Roger Horn
found necessary condition on the n-tuples α, β, and γ and conjectured that this
conditions were also sufficient. This conjecture remained open for several years, and
it was solved at the end of the 20th century. Later on, these results were extended to
operators in embeddable II1 factors. In this appendix, we briefly recall these results;
for some really deep material on the subject, we point the reader to the nice surveys
by R. Bhatia [4] and W. Fulton [5].
To begin with, we are going to fix some notation and conventions in order to state
correctly the results in the finite dimensional setting. Firstly, the n-tuples will be
considered arranged in non-increasing order, and by means of λ(A) we denote the
vector of eigenvalues of a self-adjoint matrix, also arranged in non-increasing order.
Clearly, one necessary condition that three n-tuples α, β, and γ have to satisfy in
order to be the eigenvalues of Hermitian matrices A, B, and C such that C = A+B,
is the next identity

n∑
j=1

γj =
n∑
j=1

αj +
n∑
j=1

βj . (15)

This equality is far from being sufficient. In [7], Horn prescribed sets of triples
(I, J,K) of subsets of {1, . . . , n}, that we will always write in increasing order, and
he proved that the system of inequalities

n∑
k∈K

γk ≤
∑
i∈I

αi +
∑
j∈J

βj ,

are necessary. The triples (I, J,K) are defined by the following inductive procedure.
Set

Un
r :=

{
(I, J,K) :

∑
i∈I

i+
∑
j∈J

j =
r(r + 1)

2
+
∑
k∈K

k

}
.

For r = 1 set T n1 = Un
1 . If n ≥ 2, set

T nr :=
{

(I, J,K) ∈ Un
r : for all p < r and all (F,G,H) ∈ T rp ,∑

f∈F

if +
∑
g∈G

jg ≤
p(p+ 1)

2
+
∑
h∈H

kh

}
.

Then, the system of inequalities considered by Horn runs over all the triples in the
set Tn :=

⋃n
k=1 T

n
k . He also conjectured that this system of inequalities, together

with the identity (15), were sufficient. The proof of this conjecture is a consequence
of several deep works of Klyachko, Knutson, and Tao (see [5, 9, 10, 11]).

Theorem A.1. Given α, β, γ ∈ Rn, the following statements are equivalent:

1. There are n × n Hermitian matrices A, B and C such that C = A + B and
λ(A) = α, λ(B) = β, and λ(C) = γ;
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2.
∑n

k=1 γk =
∑n

i=1 αi +
∑n

j=1 βj, and for every (I, J,K) in T nr ,
∑

k∈K γk ≤∑
i∈I αi +

∑
j∈J βj

Later on, this result was extended by Bercovici and Li in [2] to operators in an
embeddable II1 factor M, i.e. a factor that can be embedded in the ultrapower of
the hyperfinite factor. To state correctly this generalization, we need to introduce
some notations. Given n ∈ N, if I ⊆ {1, . . . , n}, then σI denotes the set⋃

i∈I

[
(i− 1)

n
,
i

n

)
.

With this notation, the set T is defined by

T :=
∞⋃
n=1

n−1⋃
r=1

{(σI , σJ , σK) : (I, J,K) ∈ T nr } .

Theorem A.2. Consider bounded non-increasing right-continuous functions u, v,
and w defined in the [0, 1). The following are equivalent:

1. There exist a, b ∈M such that u = λa, v = λb and w = λa+b;

2. The functions u, v, and w satisfy:∫ 1

0

u(t) dt+

∫ 1

0

v(t) dt =

∫ 1

0

w(t) dt , and∫
ω1

u(t) dt+

∫
ω2

v(t) dt ≥
∫
ω3

w(t) dt , ∀(ω1, ω2, ω3) ∈ T . (16)
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