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Abstract

We prove the existence of sampling sets and interpolation sets near the critical
density, in Paley Wiener spaces of a locally compact abelian (LCA) group G. This
solves a problem left by Gröchenig, Kutyniok, and Seip in the article: ‘Landau’s
density conditions for LCA groups’ (J. of Funct. Anal. 255 (2008) 1831-1850). To
achieve this result, we prove the existence of universal Riesz bases of characters for
L2(Ω), provided that the relatively compact subset Ω of the dual group Ĝ satisfies
a multi-tiling condition. This last result generalizes the Fuglede’s theorem, and
extends to LCA groups setting recent constructions of Riesz bases of exponentials
in bounded sets of Rd.
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Dyadic cubes; Locally compact abelian groups.

1 Introduction
Consider a locally compact abelian (LCA) group G, and let Ĝ denote its dual group.
Given a relatively compact Borel subset Ω of Ĝ, the Paley Wiener space PWΩ consists
of all square integrable functions with Fourier transform supported on Ω. For this space, a
set Λ ⊆ G is a sampling set if there exist constants A,B > 0 such that for any f ∈ PWΩ,

A||f ||22 ≤
∑
λ∈Λ

|f(λ)|2 ≤ B||f ||22.

On the other hand, Λ is an interpolation set for PWΩ if the interpolation problem

f(λ) = cλ,
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has a solution f ∈ PWΩ for every {cλ}λ∈Λ ∈ `2(Λ). A set Λ that is at the same time a
sampling and interpolation set is a complete interpolation set.

Using the Fourier transform, it turns out that Λ is a sampling set (resp. interpolation set,
complete interpolation set) if and only if Λ, as a set set of characters restricted to Ω, is a
frame (resp. Riesz sequence, Riesz basis) of L2(Ω).

Sampling and interpolation sets satisfy the following necessary geometric conditions,
proved by Landau in [13] for Rd, and later on extended to LCA groups in [6]:

• A sampling set Λ for PWΩ satisfies D−(Λ) ≥ mĜ(Ω);

• An interpolation set Λ for PWΩ satisfies D+(Λ) ≤ mĜ(Ω),

where mĜ denotes the Haar measure of Ĝ, and D+ and D− denote the so called upper
and lower Beurling densities (see Section 3.2 for precise definitions). In some sense,
the Beurling’s densities measure how the set Λ is distributed in G with respect to the
distribution of a reference set, that for instance in the case of Rd is the lattice Zd.

In [6], Gröchenig, Kutyniok and Seip raised the natural question of whether there exist
sampling sets and interpolation sets for PWΩ with densities arbitrarily close to the critical
density mĜ(Ω). Except for the particular case G = Rd, proved by Marzo in [16] adapting
a construction of Lyubarskii and Seip [15] and Kohlenberg [11], the problem remained
open till now. The main obstacle, which is a recurrent problem in general LCA groups,
is the absence of a natural substitute of rescalings. Therefore, a different approach is
required.

The main goal of this paper is to give a complete solution to the aforementioned problem.
A natural strategy is to show that, given a compact set Ω, there exists an outer (resp.
inner) approximation set Ωε of Ω such that L2(Ωε) has a Riesz basis of characters. As
a consequence, we obtain the existence of sampling (resp. interpolation) sets near the
critical density (see Theorem 3.5). Indeed, the Riesz basis of L2(Ωε) becomes a frame
for L2(Ω) if Ωε is an outer approximation, and it becomes a Riesz sequence if Ωε is an
inner approximation. The problem to accomplish this strategy in general LCA groups is
to prove the existence of such “good” approximation sets. To overcome this difficulty, we
proceed as follows.

First, we show that, given a relatively compact Borel set Ω ⊂ Ĝ that satisfies some tiling
condition, the space L2(Ω) admits a Riesz basis of characters (see Section 4 for details).
This is motivated by recent results due to Grepstad and Lev in [5] (see also [12]) and
it provides an extension of them. In order to prove this generalization we use operator
theoretical techniques developed around the theory of shift invariant spaces. The shift
invariant techniques provide a better understanding of the problem. As a consequence,
besides the extension of the multi-tiling result of Grepstad and Lev to the group setting,
we also prove a converse that is new even for Rd (see Theorem 4.4). Furthermore, we
answer negatively a question raised by Kolountzakis in [12].
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In this way we get several candidates for approximation sets, i.e., those sets that satisfy
a tiling condition with respect to a lattice. However, in general there are not sufficiently
many of such sets to assure the required approximation, essentially because the group Ĝ
may not have a rich family of lattices. In order to enlarge the family of candidates, we
show that we can also consider sets Ωε that satisfy the tiling condition in an appropriate
quotient group Ĝ/K instead of in the group Ĝ. Thus, we obtain a Riesz basis of characters
in L2(π(Ωε)), where π denotes the canonical projection onto that quotient. Finally, we
prove that this Riesz basis can be lifted to a Riesz basis of characters for L2(Ωε) (see the
last part of Section 5 for the details).

The paper is organized as follows. In section 2, we introduce preliminary results on
LCA groups. Section 3 describes the main results. In section 4 we construct the Riesz
basis of characters for L2(Ω), under a multi-tiling condition on the set Ω. In section 5 we
introduce the notion of quasi-dyadic cubes, which are used to construct the approximation
sets. Finally, with all the necessary techniques at hand, we proceed to the proof of the
main result in section 6.

2 Preliminaries
Throughout this section we review basic facts on locally compact abelian groups, (for
more details see [2], [7], [8], [17]), setting in this way the notations we need for the
following sections. Then, we introduce H-invariant spaces that generalize the concept of
shift invariant spaces in the context of these groups (see [1]).

2.1 LCA Groups

Let G denote a Hausdorff locally compact abelian (LCA) group, and Ĝ its dual group,
that is;

Ĝ = {γ : G→ C, and γ is a continuous character of G},

where a character is a function satisfying the following properties:

(i) |γ(x)| = 1, ∀x ∈ G;

(ii) γ(x+ y) = γ(x)γ(y), ∀x, y ∈ G.

Thus, the characters generalize the exponential functions γ(x) = γt(x) = e2πitx in the case
G = (R,+). On every LCA group G there exists a Haar measure. It is a non-negative,
regular Borel measure mG that is non-identically zero and translation-invariant, which
means:

mG(E + x) = mG(E),

for every element x ∈ G and every Borel set E ⊂ G. This measure is unique up to a
constant. Analogously to the Lebesgue spaces, we can define the Lp(G) = Lp(G,mG)
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spaces associated to the group G and the measure mG:

Lp(G) :=
{
f : G→ C, f is measurable and

∫
G

|f(x)|p dmG(x) <∞
}
.

Theorem 2.1. Let G be an LCA group and Ĝ its dual. Then

(i) The dual group Ĝ, with the operation (γ + γ′)(x) = γ(x)γ′(x) is an LCA group.
The topology in Ĝ is the one induced by the identification of the characters of the
group with the characters of the algebra L1(G).

(ii) The dual group of Ĝ is topologically isomorphic to G, that is, ̂̂G ≈ G, with the

identification g ∈ G↔ eg ∈
̂̂
G , where eg(γ) := γ(g).

(iii) G is discrete (resp. compact) if and only if Ĝ is compact (resp. discrete).

As a consequence of (ii) of the previous theorem, we could use the notation (x, γ) for the
complex number γ(x), representing either the character γ applied to x or the character x
applied to γ.

Taking f ∈ L1(G) we define the Fourier transform of f , as the function f̂ : Ĝ→ C given
by

f̂(γ) =

∫
G

f(x)(x,−γ) dmG(x), γ ∈ Ĝ,

If the Haar measure of the dual group Ĝ is normalized conveniently, we obtain the inversion
formula

f(x) =

∫
Ĝ

f̂(γ)(x, γ)dmĜ(γ),

for a specific class of functions. In the case that the Haar measures mG and mĜ are
normalized such that the inversion formula holds, the Fourier transform on L1(G)∩L2(G)

can be extended to a unitary operator from L2(G) onto L2(Ĝ). Thus the Parseval formula
holds:

〈 f, g 〉 =

∫
G

f(x)g(x)dmG(x) =

∫
Ĝ

f̂(γ)ĝ(γ)dmĜ(γ) = 〈f̂ , ĝ〉

for f, g ∈ L2(G). We conclude this subsection with the next classical result.

Proposition 2.2. If G is a compact group, then the characters of G form an orthonormal
basis for L2(G).

2.2 H-invariant spaces

In this subsection we will review some basic aspects of the theory of shift invariant spaces
in LCA groups. We will specially focus on the Paley Wiener spaces, that constitutes an
important family of shift invariant spaces in which we are particularly interested. The

4



reader is referred to [1], where he can find the results in full generality, as well as other
results related to shift invariant spaces in LCA groups. Let G be an LCA group, and let
H be a uniform lattice on G, i.e., a discrete subgroup of G such that G/H is compact.
Recall that a Borel section of G/H is a set of representatives of this quotient, that is,
a subset A of G containing exactly one element of each coset. Thus, each element x ∈ G
has a unique expression of the form x = a+h with a ∈ A and h ∈ H. Moreover, it can be
proved that there exists a relatively compact Borel section of G/H, which will be called
fundamental domain (see [4] and [9]).

Definition 2.3. We say that a closed subspace V ⊂ L2(G) is H-invariant if

f ∈ V then τhf ∈ V, ∀h ∈ H,

where τhf(x) = f(x− h).

As we have mentioned, Paley Wiener spaces are important examples ofH-invariant spaces,
which in this context are defined by

PWΩ = {f ∈ L2(G) : supp f̂ ⊂ Ω},

where Ω ⊂ Ĝ is a relatively compact Borel set (see [6]). Actually, this space is invariant
by any translation. In particular, it is H-invariant for any lattice H. Let Λ be the dual
lattice of H; that is, the annihilator of H defined by

Λ = {γ ∈ Ĝ : (h, γ) = 1, for allh ∈ H}.

Suppose that Ω tiles Ĝ by translations of Λ, i.e.

∆Ω(x) :=
∑
λ∈Λ

χΩ(x− λ) = 1, a.e.

In this case, it is well known that {eh}h∈H is an orthonormal basis of L2(Ω). Indeed,
since Λ is also a uniform lattice, in particular, Ĝ/Λ is compact. So, as we recall in
Proposition 2.2, H ' (Ĝ/Λ)̂ is an orthonormal basis of L2(Ĝ/Λ). On the other hand,
this space is isometrically isomorphic to L2(Ω), because 1-tiling sets are Borel sections of
the quotient group Ĝ/Λ up to a zero measure set.

In order to deal with multi-tiling sets, we recall that a set Ω multi-tiles, or more precisely
k-tiles Ĝ by translations of Λ if

∆Ω(x) :=
∑
λ∈Λ

χΩ(x− λ) = k, a.e.

For example, if Ω is a disjoint union of 1-tiling sets then the previous condition is satisfied.
Next lemma shows that the reverse also holds, not only in Rn (see Lemma 1 in [12]), but
also in the context of the LCA groups.
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Lemma 2.4. Let G be an LCA group and H ⊂ G a countable discrete subgroup. A
mesurable set Ω ⊂ G, k-tiles G under the translation set H, if and only if

Ω = Ω1 ∪ · · · ∪ Ωk ∪R,

where R is a zero measure set, and the sets Ωj, 1 ≤ j ≤ k are disjoint and each of them
tiles G by translations of H.

Proof. If Ω is a disjoint union of k sets of representatives of G/H up to measure zero then
clearly

∑
h∈H χΩ(x− h) = k, a.e.

For the converse, consider D to be a Borel section of G/H and let {hj}j∈N be an enumer-
ation of the elements of H. We have ∆Ω(d) = k for almost all d ∈ D. If E denotes the set
of the exceptions, define for d ∈ D \ E,

ij(d) = min{n ∈ N :
n∑
s=1

χΩ(d+ hs) = j}, j = 1, . . . , k.

and the measurable sets,

Ej,n = {d ∈ D \ E : ij(d) = n}, n ∈ N.

Finally for j = 1, . . . , k, let Ωj =
⋃
n∈N(Ej,n + hn). It is straightforward to see that Ω =⋃k

j=1 Ωj ∪R, is the desired decomposition. Here the remaining set R = Ω\ (Ω1∪ . . .∪Ωk)
has measure zero because it is contained in E +H. �

Let us recall now the following simple but useful proposition, that in the case of LCA
groups is a direct consequence of Parseval identity and Weil’s formula.

Proposition 2.5. Let D be a Borel section of Ĝ/Λ. The map T : L2(G)→ L2(D, `2(Λ))
defined by

T f(ω) = {f̂(ω + λ)}λ∈Λ,

is an isometric isomorphism. Moreover, for each element h ∈ H

T (τh f)(ω) = eh(ω){f̂(ω + λ)}λ∈Λ,

for almost every ω ∈ D.

Remark 2.6. It is not difficult to see that if f̂ and ĝ are equal almost everywhere, then
for almost every ω ∈ D

{f̂(ω + λ)}λ∈Λ = {ĝ(ω + λ)}λ∈Λ.

This guaranties that T is well defined, and justifies the evaluation of elements of L2(G).
With respect to the second part of Proposition 2.5, roughly speaking, it says that T
diagonalizes the H-translations. N

6



When the H-invariant space is finitely generated, Proposition 2.5 allows to translate a
problem in (infinite dimensional) H-invariant spaces, to simpler linear algebra problems
in finite dimensional Hilbert spaces. Suppose for instance that Ω is a measurable subset of
Ĝ that k-tiles Ĝ by translations of Λ. Then, for almost every ω ∈ D there exist precisely
k elements λ1, . . . , λk, of Λ such that ω + λj ∈ Ω, where λj = λj(ω). Otherwise we would
contradict that Ω is a k-tiling set. This implies that the subspace

JΩ(ω) :=
{
{f̂(ω + λ)}λ∈Λ : f ∈ PWΩ

}
'
{
{f̂(ω + λj)}j=1...,k : f ∈ PWΩ

}
has dimension at most k. This remark together with Proposition 2.5 lead to the following
result.

Theorem 2.7. Let Ω be a relatively compact, k-tiling subset of Ĝ. Given φ1, . . . , φk ∈
PWΩ we define

Tω =

φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
... . . . ...

φ̂1(ω + λk) . . . φ̂k(ω + λk)


where the λj = λj(ω) for j = 1, . . . , k are the k values of λ ∈ Λ such that ω + λ ∈ Ω.
Then, the following statements are equivalent:

(i) The set ΦH = {τhφj : h ∈ H , j = 1, . . . , k} is a Riesz basis for PWΩ.

(ii) There exist A,B > 0 such that for almost every ω ∈ D,

A||x||2 ≤ ‖Tω x‖2 ≤ B||x||2,

for every x ∈ Ck.

Moreover, in this case the constants of the Riesz basis are

A = inf
ω∈D

‖T−1
ω ‖−1 and B = sup

ω∈D
‖Tω‖.

For a sake of completeness, we will give a proof of this result adapted to our setting. For
the proof in more general H-invariant spaces see [1].

Proof. Let D be a fundamental domain of Ĝ/Λ. Consider a family {aj,h} with finitely
many non-zero terms, where j = 1, . . . , k and h ∈ H. Using the Fourier transform and a
Λ-periodization argument we get∥∥∥∥∥∑

j,h

aj,hτhφj

∥∥∥∥∥
2

L2(G)

=

∫
D

k∑
j,`=1

mj(ω)

(∑
λ∈Λ

φ̂j(ω + λ)φ̂`(ω + λ)

)
m`(ω) dmĜ(ω).
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where mj =
∑

h∈H aj,he−h. For each j, the vector {φ̂j(ω + λ)} has at most k non-
zero coordinates. More precisely, the only coordinates that can be different from zero
are those corresponding to the elements λj(ω) ∈ Λ considered in the matrix Tω. So, if
m = (m1, . . . ,mk) then∥∥∥∥∥

k∑
j=1

∑
h∈H

aj,hτhφj

∥∥∥∥∥
2

L2(G)

=

∫
D

〈T ∗ωTωm(ω),m(ω) 〉Ck dmĜ(ω)

=

∫
D

‖Tωm(ω)‖2
Ck dmĜ(ω). (1)

On the other hand∫
D

‖m(ω)‖2
Ck dmĜ(ω) =

k∑
j=1

∫
D

|mj(ω)|2 dmĜ(ω) =
k∑
j=1

∑
h∈H

|aj,h|2. (2)

Combining (1), (2) and standard arguments of measure theory we get that (i)=⇒(ii).

For the other implication, note that from (1) and (2) we immediately get that the family
ΦH is a Riesz sequence for PWΩ. So, it only remains to prove that condition (ii) also
implies that ΦH is complete. With this aim, let f ∈ PWΩ, and suppose that 〈 f, τhφj 〉 = 0
for every h ∈ H and j = 1, . . . ,m. By a Λ-periodization argument we get

0 =
〈
f̂ , e−hφ̂j

〉
=

∫
D

(∑
λ∈Λ

f̂(ω + λ)φ̂j(ω + λ)

)
eh(ω) dmĜ(ω).

Since {eh}h∈H is an orthonormal basis for L2(Ĝ/Λ), then∑
λ∈Λ

f̂(ω + λ)φ̂j(ω + λ) = 0, a.e. ω mĜ.

This implies that T ∗ω({f(ω + λj)}kj=1) = 0, where λj = λj(w). Thus, T (f) = 0 a.e mĜ. �

3 Sampling and interpolation near the critical density
In this section we study sampling sets, and interpolation sets on PWΩ, when Ω is a
relatively compact subset of Ĝ. In [6], Gröchenig, Kutyniok, and Seip introduced two
notions of densities that suitably generalize the Beurling’s densities defined in Rd. Our
main goal is to prove that there exist sampling sets, and interpolation sets whose densities
are arbitrarily close to the critical one, answering a question raised by Gröchenig et. al.
in [6].
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3.1 Standing hypothesis

Since we will work with relatively compact sets Ω, throughout this paper we will assume
that G is an LCA group such that its dual Ĝ is compactly generated (but not compact to
avoid trivialities). By the standard structure theorems, Ĝ is isomorphic to Rd ×Zm ×K,
where K is a compact subgroup of Tω. Consequently, G is isomorphic to Rd × Tm × D,
where D is a countable discrete group. In particular, note that both G and Ĝ are second
countable.

This is not a serious restriction, as the following lemma shows (see [3] or [6]).

Lemma 3.1. Assume that Ω ⊆ Ĝ is relatively compact, and let H be the open subgroup
generated by Ω. Then H is compactly generated and there exists a compact subgroup
K ⊆ G such that every f ∈ PWΩ is K-periodic. Furthermore, the quotient G/K is
homeomorphic to Rd × Tm × D, where D is a countable discrete abelian group, and
Ĝ/K ' H.

Therefore, given a relatively compact set Ω ⊆ Ĝ, this lemma shows that the space PWΩ

essentially lives in L2(G/K), and Ĝ/K ' H is compactly generated.

3.2 Beurling-type densities in LCA groups

To begin with, recall that a subset Λ of G is called uniformly discrete if there exists
an open set U such that the sets λ+U (λ in Λ) are pairwise disjoints. In some sense, the
densities in Rd compare the concentration of the points of a given discrete set with that
of the integer lattice Zd. In a topological group, this comparison is done by means of the
following relation:

Definition 3.2. Given two uniformly discrete sets Λ and Λ′ and non-negative numbers α
and α′, we write αΛ4α′Λ′ if for every ε > 0 there exists a compact subset K of G such
that for every compact subset L we have

(1− ε)α#(Λ ∩ L) ≤ α′#(Λ′ ∩ (K + L)).

Now, we have to fix a reference lattice in the group G. As we mentioned at the begining
of this section, since Ĝ is compactly generated, G is isomorphic to Rd×Tm×D, where D
is a countable discrete group. So, a natural reference lattice is H0 = Zd×{e}×D. Using
this reference lattice, and the above transitive relation, we have all what we need to recall
the definitions of upper and lower densities.

Definition 3.3. Let Λ be a uniformly discrete subset of G. The lower uniform density
of Λ is defined as

D−(Λ) = sup{α ∈ R+ : αH04Λ}.
On the other hand, its upper uniform density is

D+(Λ) = inf{α ∈ R+ : Λ4αH0}.
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These densities always satisfy that D−(Λ) ≤ D+(Λ), and they are finite. Moreover, it can
be shown that the infimum and the supremum are actually a minimum and a maximum.
In the case that both densities coincide, we will simply write D(Λ). It should be also
mentioned that in the case of Rd, these densities coincide with the Beurling’s densities
when the reference lattice is Zd.
Using these densities, Gröchenig, Kutyniok, and Seip obtained in [6] the following exten-
sion of the classical result of Landau to LCA groups.

Theorem 3.4. Suppose Λ is a uniform discrete subset of G. Then

S) If Λ is a sampling set for PWΩ, then D−(Λ) ≥ mĜ(Ω);

I) If Λ is an interpolation set for PWΩ, then D+(Λ) ≤ mĜ(Ω).

A natural question is whether there exist sampling sets and interpolation sets near the
critical density. In the case G = Rd a positive answer was given by Marzo in [16]. The
following theorem is our main result, which completely answers this question.

Theorem 3.5. Let Ω be a compact subset of Ĝ, and let ε > 0. Then, the following
statements hold:

(i) There exists a sampling set Jε for PWΩ such that

D (Jε) ≤ mĜ(Ω) + ε.

(ii) If mĜ(∂Ω) = 0, then there exists an interpolation set Jε for PWΩ such that

D (Jε) ≥ mĜ(Ω)− ε.

Although roughly speaking the strategy of the proof will be similar to the one used in [15]
and [16] (see also [11]), in order to pursue this strategy, we will have to overcome several
technical issues. This will be done in the following two sections. Finally, in section 6 we
will combine the obtained results, and we will provide the proof of Theorem 3.5.

4 Constructing Riesz basis in the context of LCA groups
The relation between multi-tiling sets and the existence of Riesz bases in the Rd setting
was firstly pointed out in [5] by Grepstad-Lev. More precisely, they proved that a bounded
Riemann integrable Borel set Ω ⊆ Rd admits a Riesz basis of exponentials if it multi-tiles
Rd with translation set a lattice Λ. Later on, Kolountzakis gave in [12] a simpler proof
of this result in a slightly more general form (see also [10] for a different approach).
Important special cases had been proved by Lyubarskii-Seip in [15], and Marzo in [16],
(see also [14] and [18]).

One of the main theorems of this section is the following generalization of Grepstad-Lev’s
result to the LCA group setting.
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Theorem 4.1. Let H be a uniform lattice of G, Λ its dual lattice, and k ∈ N. Then,
there exist a1, . . . , ak ∈ G, depending only on the lattice Λ, such that for any relatively
compact Borel subset Ω of Ĝ satisfying

∆Ω(ω) :=
∑
λ∈Λ

χΩ(ω − λ) = k, a.e. ω ∈ Ĝ,

the set
{eaj−h χΩ : h ∈ H , j = 1, . . . , k}

is a Riesz basis for L2(Ω).

We would like to emphasize that, in the previous theorem, the same set {a1, . . . , ak} can
be used for any k-tiling set Ω. If we call such a k-tuple (a1, . . . , ak) H-universal. The
following result is a slight improvement of the already known results.

Theorem 4.2. Let H be a uniform lattice of G and k ∈ N. Then, there exists a Borel set
N ⊆ Gk such that mGk(N) = 0 and every k-tuple (a1, . . . , ak) ∈ Gk \N is H-universal.

Remark 4.3. Note that, if we fix a fundamental domain D, given any universal k-tuple
(a1, . . . , ak) there exists a unique k-tuple (d1, . . . , dk) ∈ Dk such that

{eaj−h χΩ : h ∈ H , j = 1, . . . , k} = {edj−h χΩ : h ∈ H , j = 1, . . . , k}.

So, we can restrict out attention to universal k-tuples belonging to Dk. In this case,
consider the “uniform” probability measure on Dk given by the restriction of the Haar
measure of Gk to Dk (conveniently normalized). Then another way to state Theorem 4.2
is that a k-tuple in Dk is almost surely H-universal. N

The second main result of this section is the following kind of converse of Theorem 4.1.

Theorem 4.4. Let H be a uniform lattice of G and Λ its dual lattice. Given a relatively
compact subset Ω of Ĝ, if L2(Ω) admits a Riesz basis of the form

{eaj−h χΩ : h ∈ H , j = 1, . . . , k}

then Ω k-tiles Ĝ.

The proofs of these results are provided in the next subsection. Then, in the last subsection
we will show a counterexample that answer negatively a question raised by Kolountzakis
in [12].
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4.1 Proofs of Theorems 4.1, 4.2 and 4.4

We begin with two technical lemmas. Following Rudin’s book [17], we will say that a
function p is a trigonometric polynomial on G if it has the form

p(g) =
n∑
j=0

cjγj(g)

for some n ∈ N, cj ∈ C and γj ∈ Ĝ.

Lemma 4.5. The zero set of a trigonometric polynomial p on G has zero Haar measure.

Proof. By the standing hypothesis, we can identify G with the group Rd×Tm×D, for some
countable discrete LCA group D. Hence, given (x, ω, d) ∈ Rd × Tm × D, the polynomial
p can be written as

p(x, ω, d) =
n∑
j=0

cjρj(x)τ(ω)δ(d)

where ρ ∈ R̂d, τ ∈ T̂d, and δ ∈ D̂. Let Cp = {(x, ω, d) : p(x, ω, d) = 0}, and suppose by
contradiction that mG(Cp) > 0. Since

Cp =
⋃
d∈D

Cp ∩
(
Rd × Tm × {d}

)
,

there exists d0 ∈ D such that

mG

(
Cp ∩

(
Rd × Tm × {d0}

))
> 0

If we restrict p to Rd × Tm × {d0} we get the trigonometric polinomial q on Rd × Tm

q(x, ω) =
n∑
j=0

(
cjδ(d)

)
ρj(x)τ(ω)

that is non-trivial and its zero set has positive measure. This is a contradiction, and
therefore mg(Cp) = 0. �

Lemma 4.6. Let K1 and K2 be compact subsets of Ĝ. If

Γ = {λ ∈ Λ : (λ+K1) ∩K2 6= ∅},

then #Γ <∞.

Proof. Note that Γ ⊂ Λ∩ (K1−K2), where K1−K2 = {k1−k2 : kj ∈ Kj, j = 1, 2}. Since
Λ is a discrete set and (K1 −K2) is compact, Γ should be necessarily a finite set. �
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Proof of Theorems 4.1 and 4.2. Given a1, . . . , ak ∈ G, define the functions φ1, . . . , φk by
their Fourier transform in the following way:

φ̂j := eaj χΩ, j ∈ {1, . . . , k}. (3)

We will show that under the hypothesis on Ω, there exist a1, . . . , ak such that φ1, . . . , φk
translated by H form a Riesz basis for PWΩ.

Choose a fundamental domain D of Ĝ/Λ. Since Ω is a set that k-tiles Ĝ, for almost every
ω ∈ D, the vectors φ̂j(ω) have at most k entries different from zero. These entries are
those that correspond to the (different) elements λj = λj(ω) ∈ Λ, 1 ≤ j ≤ k, such that
ω + λj ∈ Ω. For ω ∈ D consider the matrix

Tω =

φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
... . . . ...

φ̂1(ω + λk) . . . φ̂k(ω + λk)


By Theorem 2.7, the H-translations of φ1, . . . , φk form a Riesz basis for PWΩ if and only
if there exist A,B > 0 such that

A||x||2 ≤ ‖Tωx‖2 ≤ B||x||2, (4)

for every x ∈ Ck and almost every ω ∈ D. The rest of the proof follows ideas of [12]
suitably adapted to our setting. Firstly, note that

Tω =

φ̂1(ω + λ1) . . . φ̂k(ω + λ1)
... . . . ...

φ̂1(ω + λk) . . . φ̂k(ω + λk)

 =

ea1 (ω + λ1) . . . eak (ω + λ1)
... . . . ...

ea1 (ω + λk) . . . eak(ω + λk)



=

(a1, λ1) . . . (ak, λ1)
... . . . ...

(a1, λk) . . . (ak, λk)




(a1, ω) 0 . . . 0 0
0 (a2, ω) . . . 0 0
...

... . . . ...
...

0 0 . . . (ak−1, ω) 0
0 0 . . . 0 (ak, ω)

 = Eω Uω .

(5)

Since Uω is unitary, to prove the inequalities in (4) is equivalent to show that

A||x||2 ≤ ‖Eωx‖2 ≤ B||x||2, (6)

for every x ∈ Ck, and almost every ω ∈ D. By Lemma 4.6, applied to K1 = D and
K2 = Ω, when ω runs over (a full measure subset of) the Borel section D, only a finite
number of different matrices Eω appear in (5), say E1, . . . , EN . Thus, it is enough to
prove that they are all invertible. Note that the determinants of the Eω are polynomials
of the form

d(x1, . . . , xk) =
∑
π∈Sk

sgn(π)
k∏
j=1

(xπ(j), λj(ω)),
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evaluated in (a1, . . . , ak) ∈ G × · · · × G = Gk, where Sk denotes the permutation group
on 1, . . . , k. Since Λ is countable, the set of trigonometric polynomials on Gk

Pk =

{
p(x1, . . . , xk) =

∑
π∈Sk

sgn(π)
k∏
j=1

(xπ(j), λj) : for any (λ1, . . . , λk) ∈ Λk

}

is countable. This set contains the trigonometric polynomials d(x1, . . . , xk) associated to
the determinants of the matrices Ej. Note that it also contains the polynomials associ-
ated to matrices E ′j coming from any other k-tiling set. Therefore, the universal k-tuple
(a1, . . . , ak) that we are looking for, is any k-tuple such that

p(a1, . . . , ak) 6= 0 ∀p ∈ Pk.

To prove that such a k-tuple exists, we will use a measure theoretical argument based
on Lemma 4.5. Note that Gk is a compactly generated LCA group, and Λk is the dual
lattice of the the uniform lattice Hk in Gk. Hence, using Lemma 4.5 with Gk instead of G,
we get that the union of the zero sets corresponding to these polynomials has zero Haar
measure in Gk. Therefore, there exist a1, . . . , aN ∈ G so that (a1, . . . , aN) does not belong
to any of these zero sets. In particular, for these values of aj, the matrices E1, . . . , EN are
invertible. Then, by Theorem 2.7, the H-translations of the functions φ1, . . . , φk form a
Riesz basis for PWΩ. This is equivalent to say that

{eaj−h χΩ : h ∈ H , j = 1, . . . , k},

is a Riesz basis on L2(Ω). The same holds for any other k-tiling set Ω′ by construction of
Pk and the k-tuple (a1, . . . , ak). �

Proof of Theorem 4.4. Let D be a fundamental domain of Ĝ/Λ. Since both D and Ω are
relatively compact, by Lemma 4.6 the set Λ0 := {λ ∈ Λ : (λ + D) ∩ Ω 6= ∅} is finite.
Recall that for each ω ∈ D

JΩ(ω) =
{
{f(ω + λ)}λ∈Λ : f ∈ L2(Ω)

}
.

Then, the hypothesis implies that there exists a measurable set E ⊆ D of zero Haar
measure such that for every ω ∈ D \ E the set of vectors

{eaj(ω + λ)χΩ(ω + λ)}λ∈Λ (7)

is a Riesz basis of JΩ(ω). In particular, for every ω ∈ D \ E we have that

#{λ ∈ Λ0 : ω + λ ∈ Ω} ≥ k.

Indeed, otherwise the dimension of JΩ(ω) would be smaller than k, which contradicts the
fact that the k vectors in (7) form a Riesz basis of JΩ(ω). Now, assume that there exists
a set of positive measure F ⊆ D \ E such that for every ω ∈ F

#{λ ∈ Λ0 : ω + λ ∈ Ω} > k.

14



Since Λ0 is finite, the set {Γ ⊂ Λ0 : #Γ > k} is also finite. So, there exists F0 ⊆ F of
positive measure and λ1, . . . , λn ∈ Λ0, n > k, such that for every ω ∈ F0 it holds that
ω + λj ∈ Ω. Note that this implies that for every λj

λj + F0 ⊆ Ω.

On the other hand, as D is a fundamental domain, the sets λ1 + F0, . . . , λn + F0 are
disjoint. Now consider the characteristic functions fj = χλj+F0 for each j ∈ {1, . . . , n}.
All these functions belongs to L2(Ω), and therefore for every j ∈ {1, . . . , k}

{fj(ω + λ)}λ∈Λ ∈ JΩ(ω).

Note that fj(ω+ λ) = δλ,λj . This implies that for every ω ∈ F0 the dimension of JΩ(ω) is
n > k, which is not possible because the set of vector in (7) is a Riesz basis for JΩ(ω). In
conclusion, for almost every w ∈ D

#{λ ∈ Λ0 : ω + λ ∈ Ω} = k,

which precisely says that Ω is k-tiling. �

4.2 A counterexample for unbounded sets in R
The same scheme can not be applied if Ω is not relatively compact, as the following
example shows. This example also gives a negative answer to the open problem left by
Kolountzakis in [12].

Example 4.7. Let G = R, and consider the following subset of R̂ ' R:

Ω0 = [0, 1) ∪
∞⋃
n=2

[n− 2−(n−2), n− 2−(n−1)).

This is a 2-tiling set with respect to the lattice Z (see Figure 1).

0 1 2 3 4

Figure 1: The set Ω0.

However, if we consider the functions φ1 and φ2 defined through their Fourier transform
by

φ̂j(ω) = e2πiajω χΩ,

for j = 1, 2, then integer translations of φ1 and φ2 are not a Riesz basis for PWΩ for any
choice of a1, a2 ∈ R. In other words, (a1 + Z) ∪ (a2 + Z) is not a complete interpolation
sets for PWΩ for any pair a1, a2 ∈ R.
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To show this, recall that in the proof of Theorem 4.1 we proved that the integer transla-
tions of φ1 and φ2 form a Riesz basis for PWΩ if and only if the matrices

Eω =

(
e2πia1λ1(ω) e2πia2λ1(ω)

e2πia1λ2(ω) e2πia2λ2(ω)

)
,

and their inverses are uniformly bounded for almost every ω in the fundamental domain,
that for simplicity we choose the interval [0, 1). For this particular Ω0, λ1(ω) is always
equal to zero, while λ2(ω) = n if ω ∈ [1− 2−(n−1), 1− 2−n), for n ∈ N. Therefore

Eω =

(
1 1

e2πia1λ2(ω) e2πia2λ2(ω)

)
,

which can be rewritten as

Eω =

(
1 0
0 e2πia1λ2(ω)

)(
1 1
1 e2πi(a2−a1)λ2(ω)

)
.

So, if a2−a1 ∈ Q, there exists a set of positive measure such that the matrices Tω are not
invertible for ω in that set. On the other hand, if a2− a1 /∈ Q, as the set {e2πi(a2−a1)n}n∈N
is dense in T, the matrices E−1

ω are not uniformly bounded.

Since the set Ω0 also multi-tiles R with other lattices too, a natural question is whether or
not we can obtain Riesz basis using these lattices. The answer is no, and the idea of the
proof is essentially the same. For this reason, we only make some comments on the main
differences, and we leave the details to the reader. First of all, recall that the (uniform)
lattices of R have the form Λα = αZ, for some α ∈ R. It is not difficult to prove that
Ω0 multi-tiles R only for lattices corresponding to α = k−1, for some k ∈ N. Moreover,
with respect to the lattice Λk−1 , the set Ω0 is 2k-tiling. Given a1, . . . , a2k ∈ R, as we
already mentioned, in the proof of Theorem 4.1 we show that (a1 + Z) ∪ . . . ∪ (a2k + Z)
is a complete interpolation sets for PWΩ if and only if the matrices

Eω =


1 1 . . . 1 1

e2πia1λ1(ω) e2πia2λ1(ω) . . . e2πia2k−1λ1(ω) e2πia2kλ1(ω)

...
... . . . ...

...
e2πia1λ2k−1(ω) e2πia2λ2k−1(ω) . . . e2πia2k−1λ2k−1(ω) e2πia2kλ2k−1(ω)

e2πia1λ2k(ω) e2πia2λ2k(ω) . . . e2πia2k−1λ2k(ω) e2πia2kλ2k(ω)


and their inverses are uniformly bounded for almost every ω ∈ [0, k−1). By construction
of Ω0, for each m ∈ N we can find an interval I ⊆ [0, k−1) of positive measure such that
for every ω ∈ I there exists j ∈ {1, . . . , 2k} so that λj(w) = m. On the other hand, as in
the case studied before, either the orbit

{(e2πia1 m, e2πia2 m, . . . , e2πia2k−1m, e2πia2km)}m∈Z,

is periodic or there exists elements of the orbit as close as we want to the first row vector
(1, . . . , 1). Therefore, the matrices E−1

ω can not be uniformly bounded in a full measure
subset of [0, 1).
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5 Quasi-dyadic cubes

In the previous section we proved that there exist many Borel sets Ω in Ĝ such that
L2(Ω) admits a Riesz basis of characters. However, in general, they are not enough to
approximate any compact set. Let us briefly explain the reason. In the classical case of
Rd, the approximation is done by means of sets that are union of dyadic cubes. Note
that the dyadic cubes of side length equal to 2−n are fundamental domains for the lattice
2−nZ. Hence, the dilation of the cubes is reflected in the refinement of the lattices. So,
in order to get a good approximation in more general LCA groups, the idea is to look
for a nested family of lattices whose corresponding fundamental domains become in some
sense smaller and smaller. This is the main issue, because to get such family in the group
Ĝ ' Rd × Zm × K may be difficult (or even impossible), because of the compact factor.
The key to overcome this difficulty is given by the following classical result (see [7]).

Lemma 5.1. Given a neighborhood U of e in Ĝ, there exists a compact subgroup K
included in U and such that Ĝ/K is elemental, that is

Ĝ/K ' Rd × Zm × T` × F, (8)

where F is a finite group.

In Rd × Zm × T` × F , the above mentioned strategy to obtain dilations by means of
refinements of lattices can be done without any problem. More precisely, we consider

Λn = Λn(d,m, `) = (2−nZ)d × Zm × Z`2n × F ⊆ Ĝ/K ,

Q(n)
0 = [−2−n−1, 2−n−1)d × {0} × [−2−n−1, 2−n−1)` × {e} .

(9)

This leads to the following definition of quasi-dyadic cubes.

Definition 5.2. Let K be a compact subgroup of Ĝ such that Ĝ/K is elemental, and let π
the canonical projection from Ĝ onto the quotient. Identifying the quotient Ĝ/K with the
group Rd×Zm×T`×F , the family of quasi-dyadic cubes of generation n associated
to K, denoted by D (n)

K , are defined by

Q
(n)
λ = π−1(Q(n)

λ )

where Q(n)
λ = λ+Q(n)

0 for λ ∈ Λn.

Note that in order to distinguish the cubes in the quotient from the cubes in Ĝ, for those in
Ĝ/K we use calligraphic letters. Note also that the quasi-dyadic cubes Q(n)

λ are relatively
compact. Indeed, if S(n)

λ is a relatively compact Borel section of Q(n)
λ in the group Ĝ, then

Q
(n)
λ = S

(n)
λ +K.

The main difference with the classical case, is that the quasi-dyadic cubes are parametrized
not only by a (dyadic) lattice, but also by some compact subgroups. This family of quasi-
dyadic cubes clearly satisfies many of the arithmetical and combinatorial properties of the
classical dyadic cubes. However, for our purposes, the following approximation result is
the most important.
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Proposition 5.3. Let C be a compact set and V an open set such that C ⊂ V ⊂ Ĝ.
There exists a compact subgroup K of Ĝ such that Ĝ/K is an elemental LCA group, and
Q

(m)
λ1
, . . . , Q

(m)
λk
∈ D (m)

K for m ∈ N large enough such that

C ⊆
k⋃
j=1

Q
(m)
λj

= π−1

(
k⋃
j=1

λj +Q(m)
0

)
⊆ V.

Proof. Let U be a compact neighborhood of e in Ĝ such that C+U ⊆ V . Take a compact
subgroup K contained in U which satisfies that

Ĝ/K ' Rd × Zm × T` × F,

for some integers d,m, ` ≥ 0. Let π : Ĝ→ Ĝ/K denote the canonical projection. By our
assumptions on the open set U we have for n large enough that

C ⊆ C +Q
(2n)
0 ⊆ C +Q

(n)
0 ⊆ V.

On the other hand, by the compactness of C, there exist γ1, . . . , γj ∈ C such that

C ⊆
j⋃
i=1

(
γi +Q

(2n)
0

)
.

Consider the lattice Λ4n, and λi,1, . . . , λi,si ∈ Λ4n such that

π(γi +Q
(2n)
0 ) = π(γi) +Q(2n)

0 ⊆
si⋃
h=1

(
λi,h +Q(4n)

0

)
⊆ π(γi) +Q(n)

0 .

Let {λ1, . . . , λk} an enumeration of the elements of Λ4n used to cover all the sets π(γi) +

Q(2n)
0 . Then, the above inclusions imply that

C ⊆
j⋃
i=1

(
γi +Q

(2n)
0

)
⊆

k⋃
j=1

π−1
(
λj +Q(4n)

0

)
⊆

j⋃
i=1

(
γi +Q

(n)
0

)
⊂ V

Thus, we can take m = 4n, and the proof is complete. �

Another good property of the quasi-dyadic cubes is the following.

Proposition 5.4. Let Ω be finite a union of quasi-dyadic cubes in D (n)
K . Then, the space

L2(Ω) admits a Riesz basis of characters (restricted to Ω).

If π : Ĝ → Ĝ/K denotes the canonical projection, then the set π(Ω) multi-tiles the
quotient space with the lattice Λn defined in (9). By Theorem 4.1, this implies the
existence of a Riesz basis of characters in the space L2(π(Ω)). Now, we need a result
that gives us a way to lift this basis. This is provided by the following result, which in
particular concludes the proof of Proposition 5.4.
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Theorem 5.5. Let K be a compact subgroup of an LCA group G such that K̂ is count-
able. Suppose that there exists a subset Q of G/K such that L2(Q) admits a Riesz basis of
characters of G/K. If π : G→ G/K denotes the canonical projection, and Q̃ = π−1(Q),
then L2(Q̃) also admits a Riesz basis of characters.

Proof. On the one hand, note that Ĝ/K ' K⊥ ⊆ Ĝ, where K⊥ denotes the annihilator of
K. So, the Riesz basis for L2(Q) can be identified with some elements {γn} in Ĝ. On the
other hand, the elements K̂ form an orthonormal basis for L2(K) endowed with the nor-
malized Haar measure mK . Moreover, since K̂ can be identified with the quotient group
Ĝ/K⊥, the orthonormal basis for L2(K) can be identified with a system of representatives
{κm} of Ĝ/K⊥.

Now, we will prove that {γn + κm} is a Riesz basis for L2(Q̃). First of all, we will prove
that it is complete. Let F ∈ L2(Q̃) such that 〈F, γn + κm 〉 = 0 for every n and m. By
the Weil’s formula, mG = mK × mG/K provided we renormalize conveniently the Haar
measure on G/K. So, using this formula and the fact that (k, γn) = 1 for every k ∈ K
we get for every m and every n

0 =

∫
Q̃

F (g)(g, γn + κm) dmG(g)

=

∫
Q

(∫
K

F (g + k)(g + k, γn + κm) dmK(k)

)
dmG/K(π(g))

=

∫
Q

(∫
K

F (g + k)(g, κm) (k, κm) dmK(k)

)
(π(g), γn) dmG/K(π(g)).

Fix m. Then, using that {γn} is a Riesz basis for L2(Q) we get that

(g, κm)

∫
K

F (g + k) (k, κm) dmK(k) = 0 mG/K − a.e.

So, since {κm} is a (countable) orthonormal basis of K, we get that∫
K

|F (g + k)|2 dmK(k) =
∑
m

∣∣∣∣∫
K

F (g + k) (k, κm) dmK(k)

∣∣∣∣2 = 0 mG/K − a.e.

So, by the Weil’s formula we get:

‖F‖2
L2(Q̃)

=

∫
Q

(∫
K

|F (g + k)|2 dmK(k)

)
dmG/K(π(g)) = 0.

Therefore {γn + κm} is complete.
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Now, in order to prove that it is also a Riesz sequence, consider a sequence {cn,m} with
finitely many non-zero terms. Then∥∥∥∥∥∑
n,m

cn,m (γn + κm)

∥∥∥∥∥
2

L2(Q̃)

=

∫
Q̃

∣∣∣∣∣∑
n,m

cn,m (g, γn + κm)

∣∣∣∣∣
2

dmG(g)

=

∫
Q

∫
K

∣∣∣∣∣∑
n,m

cn,m (g + k, γn + κm)

∣∣∣∣∣
2

dmK(k)

 dmG/K(π(g))

Since (k, γn) = 1 for every k ∈ K, the sum inside the integrals can be rewritten as

∑
n,m

cn,m (g + k, γn + κm) =
∑
m

(
(g, κm)

∑
n

cn,m (π(g), γn)

)
(k, κm).

Therefore, using that {km} is an orthonormal basis of L2(K) we get

∫
K

∣∣∣∣∣∑
n,m

cn,m (g + k, γn + κm)

∣∣∣∣∣
2

dmK(k) =
∑
m

∣∣∣∣∣∑
n

cn,m (π(g), γn)

∣∣∣∣∣
2

.

So, putting all together∥∥∥∥∥∑
n,m

cn,m (γn + κm)

∥∥∥∥∥
2

L2(Q̃)

=
∑
m

∫
Q

∣∣∣∣∣∑
n

cn,m (π(g), γn)

∣∣∣∣∣
2

dmG/K(π(g)).

Finally, since {γn} as a Riesz basis for L2(Q), there exist A,B > 0 such that

A
∑
m,n

|cn,m|2 ≤

∥∥∥∥∥∑
n,m

cn,m (γn + κm)

∥∥∥∥∥
2

L2(Q̃)

≤ B
∑
m,n

|cn,m|2,

and this concludes the proof. �

Remark 5.6. Although our version is for Riesz bases, it also holds for orthonormal basis
or frames with minor changes. For instance, a proof for orthonormal basis is contained in
the proof of Lemma 3 of [6]. N

6 Proof of the main result
Finally, using the techniques developed in the previous sections, we provide the proof of
our main Theorem 3.5.
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(i) Sampling case: Since the Haar measure is regular, there exists an open subset V of
Ĝ such that Ω ⊆ V and mĜ(V \ Ω) ≤ ε. By Lemma 5.3, there exists a compact
subgroupK of Ĝ so that Ĝ/K is elemental, m ∈ N large enough, and Qλ1 , . . . , Qλk ∈
D (m)
K are such that

Ω ⊆
k⋃
j=1

Q
(m)
λj
⊆ V.

Let Ωε be the union of these k quasi-dyadic cubes. Then, by Proposition 5.4, the
space L2(Ωε) admits a Riesz basis consisting of characters of Ĝ (restricted to Ωε).
Let {ebn χΩε

} denote this basis, and let Jε = {bn} ⊆ G. Using Theorem 3.4 we
get that D(Jε) = mĜ(Ωε) ≤ mĜ(Ω) + ε. Note that {ebn χΩ} is a frame for L2(Ω),
because it is obtained by projecting a Riesz basis for the bigger space L2(Ωε). So,
Jε is a sampling set for PWΩ.

(ii) Interpolation case: Since mG(∂Ω) = 0, we can work with the interior of Ω. For the
sake of simplicity we will use the same letter for it. Let C be a compact subset of
Ω such that mĜ(Ω \C) ≤ ε. Again by Lemma 5.3, there exists a compact subgroup
K of Ĝ so that Ĝ/K is elemental, m ∈ N large enough, and Qλ1 , . . . , Qλk ∈ D (m)

K

are such that

C ⊆
k⋃
j=1

Q
(m)
λj
⊆ Ω.

As before, if Ωε is the union of the k quasi-dyadic cubes, then the space L2(Ωε)

admits a Riesz basis consisting characters of Ĝ (restricted to Ωε). In this case,
the set Jε consisting of these characters, forms a Riesz sequence in L2(Ω). This
is equivalent to say that, as points of G, they form an interpolation set for PWΩ.
Since D(Jε) = mĜ(Ωε) ≥ mĜ(Ω)− ε, which concludes the proof.
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