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Abstract. Given a positive and unitarily invariant Lagrangian L defined in the algebra of

Hermitian matrices, and a fixed interval [a, b] ⊂ R, we study the action defined in the Lie group of

n× n unitary matrices U(n) by

S(α) =

Z b

a
L(α̇(t)) dt ,

where α : [a, b] → U(n) is a rectifiable curve. We prove that the one-parameter subgroups of U(n)

are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if L is

strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given

endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in

U(n) as well as angular metrics in the Grassmann manifold. 1
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1. Introduction. The group of n × n complex unitary matrices U(n) carries,
as any Lie group, a canonical connection without torsion defined on left-invariant
vector fields X,Y as ∇XY = 1

2 [X,Y ], whose geodesics are the one-parameter groups
t 7→ UetZ (here U is a unitary matrix and Z an anti-Hermitian matrix). We can
introduce a Riemannian metric on the unitary group in a standard fashion

〈X,Y 〉g = Tr(U∗X(U∗Y )∗) = Tr(XY ∗),

for U∗X,U∗Y in the Lie algebra of the group, that is, for U∗X,U∗Y anti-Hermitian
matrices. It is well-known that the connection just introduced is in fact the Levi-
Civita connection of the metric g induced by the trace, and that geodesics are short
provided the spectrum of Z is bounded by π (see for instance [3]).

Now consider the bi-invariant Finsler metric given by the spectral norm,

‖X‖
U

= ‖U∗X‖ = ‖X‖

for any X tangent to a unitary operator U . Remarkably, if one keeps the connec-
tion but changes the metric, the geodesics of the connection are still short for the

∗ Departamento de Matemática, Universidad Nacional de La Plata, and Instituto Ar-

gentino de Matemática, “Alberto Calderón”, CONICET, Buenos Aires, Argentina (an-

tezana@mate.unlp.edu.ar). Partially supported by MTM-2008-05561-C02-02, 2009 SGR 1303, UNLP

(11 X585), CONICET (PIP 2009-435) and ANPCYT (PICT07-00808).
† Instituto de Ciencias, Universidad Nacional de General Sarmiento, and Instituto Argentino de
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induced rectifiable distance (which, as in the Riemannian setting, is computed as
the infimum of the length of piecewise smooth curves joining given endpoints, and
L(α) =

∫ 1

0
‖α̇‖dt). The same result was also proved in [4], using techniques of vari-

ational calculus, if the Finsler metrics are given by the p-Schatten norms for p ≥ 2.
This raises a natural question: what do these norms have in common that could imply
this phenomenon? A possible answer is that all these norms are unitarily invariant,
thus they induce bi-invariant metrics on the unitary group. One of the main obstacles
to deal with general unitarily invariant norms, is that the variational arguments get
more complicated if the norm is not smooth enough.

In this article we give a positive answer to this question by using a new approach
that avoids the variational arguments, and simplifies considerably the technicalities. It
is based in a beautiful and deep result due to Thompson on the product of exponential
matrices (Theorem 2.1 below).

Our approach also works for more general optimization problems described as
follows: fix a bounded interval [a, b] ⊂ R, and let S be the action defined on piecewise
C1 curves α : [a, b]→ U(n) by

S(α) =
∫ b

a

L(α̇(t)) dt,

where L is a Lagrangian defined in the algebra of n× n matrices, with the following
unitary invariance property: for every n×n matrix A, and every pair of n×n unitary
matrices U and V

L(UAV ) = L(A). (1.1)

As usual, it is asked that the Lagrangian is a convex and positive map, and without
loss of generality we will assume that L(0) = 0. A Lagrangian that satisfies these
properties will be called symmetric Lagrangian. Two classical examples of symmetric
Lagrangians are:

• An unitarily invariant norm ‖ · ‖φ;
• The kinetic energy E(A) = ‖A‖2F , where ‖ · ‖F denotes the Frobenius norm.

In the first case, we recover the geometric context mentioned above, because the
action S defines the length of α associated to the Finsler structure that considers the
norm ‖ · ‖φ in each tangent space. Note that in this case, S does not depend on the
parametrization of α. So, there is no significative difference between the problem of
finding a curve that minimizes S among all piecewise C1 curves or among all piecewise
C1 curves with a given interval of parameters.

However, in the second example, the action associated to the kinetic energy de-
pends on the parametrization. Let α : [a, b] → U(n) be a smooth curve. A simple
change of variable shows that, if we take the family of curves αr : [ra, rb]→ U(n) de-
fined by αr(t) = α(t/r), then r 7→ S(αr) is a non-increasing function for r ∈ (0,+∞).
The same phenomenon also holds for any other convex Lagrangian. This suggests that
in order to find a minimum we should fix the length of the interval of parameters.
This is also suggested by considering the example of the energy functional, where the
parameter t should be interpreted as the time parameter.
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As translations of that interval do not change the value of S(α), without lost of
generality we can consider intervals of the form [0, b]. So, the optimization problem
that we will study is the following:

Problem 1. Given U, V ∈ U(n) and b > 0, find the piecewise C1 curves γ :
[0, b]→ U(n) such that γ(0) = U , γ(b) = V and γ minimizes the action given by

S(α) =
∫ b

0

L(α̇(t)) dt (1.2)

where L is a given symmetric Lagrangian.
The second question that arises is whether the minimal paths, when they exist,

are unique or not, or if they are unique modulus a reparametrization of the path.
Thus we will study the following:

Problem 2. Given U, V ∈ U(n), b > 0, and a minimizing function γ : [0, b] →
U(n) with γ(0) = U , γ(b) = V , is this function the unique minimizer of the Lagrangian
for the given endpoints? Is it true that any other minimizing curve with this given
endpoints is just a reparametrization of γ?

2. Preliminaries. Throughout this paper Mn(C) denotes the algebra of com-
plex n × n matrices, Gl (n) the group of all invertible elements of Mn(C), U(n) the
group of unitary n × n matrices, and H(n) the real subalgebra of Hermitian matri-
ces. If T ∈ Mn(C), then ‖T‖ stands for the usual spectral norm, | · | indicates the
modulus of T , i.e. |T | =

√
T ∗T , and tr(T ) denotes the trace of T . Given A ∈ H(n),

λ1 (A) ≥ . . . ≥ λn (A) denotes the eigenvalues of A arranged in non-increasing way,
and given an arbitrary matrix T ∈Mn(C), s1 (T ) ≥ . . . ≥ sn (T ) denotes the singular
values of T , i.e. the eigenvalues of |T |. Finally, given A,B ∈ H(n), by means of
A ≤ B we denote that A is less that or equal to B with respect to the Löwner order.

2.1. Product of exponentials. We begin this subsection with the following
remarkable result:

Theorem 2.1 (Thompson [16]). Given X,Y ∈ H(n), there exist unitary matrices
U and V such that

eiXeiY = ei(UXU
∗+V Y V ∗) .

We will use the following corollary of Thompson’s theorem:
Corollary 2.2. Let X,Y, Z ∈ H(n) be such that ‖Z‖ ≤ π and eiXeiY = eiZ .

Then, there are unitary matrices U and V such that |Z| ≤ |UXU∗ + V Y V ∗|.
Proof. By Thompson’s Theorem it is enough to prove that, if X,Y ∈ H(n),

eiX = eiY , and ‖X‖ ≤ π, then |X| ≤ |Y |. Let Y =
∑
n∈N ηn en ⊗ en be a spectral

decomposition of Y . If Λ = {n : eiηn = −1}, then

|X| = πP +
∑
n/∈Λ

|µn| en ⊗ en ,

where P is the spectral projection of X onto the subspace generated by the eigenvec-
tors associated to P(H)π, and the eigenvalues µn ∈ (−π, π) satisfy that eiµn = eiηn

for every n /∈ Λ. Clearly PY = Y P and P |X|P ≤ P |Y |P . On the other hand, since
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|µn| ≤ |ηn| for every n /∈ Λ, we also obtain that (1−P )|X|(1−P ) ≤ (1−P )|Y |(1−P ).

Another result due to Thompson is the following triangle inequality for the mod-
ulus of matrices:

Theorem 2.3 (Thompson [14, 15]). Given A,B ∈ Mn(C), there exist unitaries
V and W such that

|X + Y | ≤ V |X|V ∗ +W |Y |W ∗.

Combining this result with Corollary 2.2 we get:
Proposition 2.4. Let m ≥ 2, and consider X,X1, . . . , Xm ∈ H(n) such that

‖X‖ ≤ π and

eiX = eiX1 · · · eiXm .

Then, there exist unitary matrices U1, . . . , Um such that |X| ≤
m∑
k=1

Uk|Xk|U∗k .

Proof. For m = 2 it is a direct consequence of Corollary 2.2 and Theorem 2.3.
Suppose that the result is proved for m = k. Then, given X,X1, . . . , Xk+1 ∈ H(n)
such that ‖X‖ ≤ π, let Y ∈ H(n) be such that ‖Y ‖ ≤ π and

eiY = eiX2 · · · eiXk+1 .

By the inductive hypothesis, there exist unitary matrices V2, . . . , Vk+1 such that

|Y | ≤
k+1∑
j=2

Vj |Xj |V ∗j .

On the other hand, since eiX = eiX1eiY , by the case n = 2 already proved, there
are unitary matrices U1 and U such that |X| ≤ U1|X1|U∗1 + U |Y |U∗. If we define
Uj = UVj for j ≥ 2, then we get the desired result.

3. Optimality of one parameter subgroups. A geodesic segment is a curve
t 7→ UeitZ for Z ∈ H(n) and U ∈ U(n). In this section we prove that the geodesic
segments (which are parametrized with constant velocity) are optimal for Problem 1.
Moreover, if L is strictly convex, then we will prove that these geodesic segments are
the unique optimal paths.

3.1. Geodesic segments are short. First, let us list in the following proposi-
tion several properties of the symmetric Lagrangian that will be used in the sequel:

Proposition 3.1. Let L : Mn(C) → [0,∞) be a symmetric Lagrangian, i.e.
convex, L(0) = 0, and unitarily invariant in the sense of equation (1.1). Then

(P1) L is continuous,
(P2) L(tA) ≤ tL(A) for every t ∈ [0, 1],
(P3) L(A) ≤ L(B) provided 0 ≤ A ≤ B,
(P4) There exists φ : Rn+ → [0,+∞) such that L(A) = φ(s(A)). This φ is invariant

under rearrangement, positive, convex, with φ(0) = 0 and φ(x) ≤ φ(y) if
x, y ∈ R+

n and xi ≤ yi for i = 1 . . . n.
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(P5) Conversely, every such φ gives place to a Lagrangian Lφ such that Lφ(A) =
φ(s(A)).

Proof. The first property is clear because every convex function in a finite dimen-
sional vector space is continuous. Also (P2) is a consequence of the convexity and
the fact that L(0) = 0. As L is unitarily invariant, the singular value decomposition
implies that L(A) only depends on the singular values of A. Hence, if x ∈ R+

n and
diag(x) denotes the n × n diagonal matrix whose diagonal entries correspond to the
coordinates of x, we can define φ(x) = L(diag(x)); clearly φ(0) = 0, it is non-negative
and convex. Convexity implies that if x, y ∈ Rn+ and xi ≤ yi for i = 1, . . . , n, then
φ(x) ≤ φ(y). This proves (P4), and (P3) is a direct consequence of it. The last
property is trivial.

Definition 3.2. A polygonal path is a broken geodesic, that is, a curve P :
[0, b] → U(n) such that there is a partition of the interval [0, b] given by the points
0 = t0 < . . . < tk = b, Herminitian matrices X1,. . .,Xk with norm less than or equal
to π, and U ∈ U(n) so that

P (t) =

Ue
i t

t1
X1 if t ∈ [0, t1]

UeiX1 · · · eiXj−1e
i

t−tj−1
tj−tj−1

Xj if t ∈ [tj−1, tj ] (j > 1)
. (3.1)

Our first step toward the proof of the optimality of the geodesic segments with
constant velocity is the following proposition, which proves that segments are better
than polygonal paths.

Proposition 3.3. Let U ∈ U(n) and V = UeiZ , with Z ∈ H(n) and ‖Z‖ ≤ π.
Let γ : [0, b] → U(n) be the segment γ(t) = Ueit

Z
b , and P : [0, b] → U(n) a polygonal

path joining U to V . Then S(P ) ≥ S(γ).

Proof. Let 0 = t0 < . . . < tk = b, and X1,. . .,Xk ∈ H(n) with norm less than or
equal to π, so that P has the form showed in (3.1) . Then

S(P ) =
k∑
j=1

∫ tj

tj−1

L
(
Ṗ (t)

)
dt =

k∑
j=1

∫ tj

tj−1

L
(

Xj

tj − tj−1

)
dt

=
k∑
j=1

(tj − tj−1)L
(

Xj

tj − tj−1

)
(3.2)

On the other hand, since eiZ = eiX1 · · · eiXk and ‖Z‖ ≤ π, by Proposition 2.4 there
exist unitary matrices U1, . . . Un such that

|Z| ≤
n∑
k=1

Uk|Xk|U∗k . (3.3)
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Then, joining (3.2) and (3.3), and using the properties of L we obtain

S(P ) = b

k∑
j=1

(tj − tj−1)
b

L
(

Xj

tj − tj−1

)

≥ bL

1
b

k∑
j=1

Uj |Xj |U∗j

 ≥ bL(Z
b

)
=
∫ b

0

L
(Z
b

)
dt = S(γ).

To prove that geodesic segments are optimal paths among all the possible piece-
wise C1 curves, we need the following standard approximation result by polygonal
paths.

Lemma 3.4. Let α : [0, b]→ Uφ be piecewise smooth. Then for any ε > 0 there is
a polygonal path Pε : [0, b]→ Uφ such that for any t ∈ [0, b],

‖P ∗ε (t)Ṗε(t)− α∗(t)α̇(t)‖ < ε.

Proof. We may as well assume that α is smooth in [0, b]. Recall that α, α̇ are
continuous in the uniform norm. Let ε > 0, and choose a partition 0 = t0 < t1 <

· · · < tn = b of the interval [0, b] such that, for any k = 0, 1, · · · , n,

‖α(t)− α(s)‖ < 2 and ‖α∗(t)α̇(t)− α∗(s)α̇(s)‖ < ε

2

if s, t ∈ [tk, tk+1]. The first condition implies that there exist Zk ∈ H(n) such that
‖Zk‖ < π and eiZk = α∗(tk)α(tk+1). Moreover, if log denotes the principal branch of
the logarithm, then

Zk = log(α∗(tk)α(tk+1)).

Now note that, for any fixed t ∈ [0, b], the map g : h 7→ 1
h log(α∗(t)α(t + h)), is

well-defined and analytic, for sufficiently small h. Moreover

g(h) −−−−→
h→0

d

ds
logα∗(t)α(t+ s)

∣∣∣∣
s=0

= α∗(t)α̇(t).

Then, taking a refinement of the partition if necessary, we can also assume that

‖Zk − α∗(tk)α̇(tk)‖ < ε

2

for any k = 0, 1, 2 · · · , n. Consider the map Pε : [0, b]→ U(H) which is defined as

Pε(t) = α(tk)e
t−tk

tk+1−tk
Zk for t ∈ [tk, tk+1].

Then Pε is certainly a polygonal path, and it is straightforward to see that verifies
the claim of the lemma.

Theorem 3.5. Let U ∈ U(n) and V = UeiZ , with Z ∈ H(n) and ‖Z‖ ≤ π. Then,
the curve γ(t) = ueitZ/b is optimal among piecewise smooth curves α : [0, b] → U(n)
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joining U to V , with respect to the action S defined by a symmetric Lagrangian, and
in particular inf S = bL(Z/b).

Proof. Given ε > 0, let δ > 0 such that ‖X−Y ‖ ≤ δ implies that |L(X)−L(Y )| <
ε/b for every X and Y in a ball big enough. Then, let Pδ be a polygonal path in U(n)
as in the previous lemma, joining U to V , such that

‖α̇− Ṗδ‖ = ‖α∗α̇− P ∗δ Ṗδ‖ < δ.

Then by Proposition 3.3,

S(γ) ≤ S(Pδ) =
∫ b

0

L(Ṗ (t)) dt ≤ ε+
∫ b

0

L(α̇(t)) dt < ε+ S(α),

Therefore, S(γ) ≤ S(α).
Remark 3.6. If α : [0, b] → U(n) is just rectifiable (that is, differentiable p.p.

with α̇(t) bounded), the approximation by a polygonal path can be carried out with
no major changes, and the proof of the previous theorem shows that in fact, geodesic
segments are optimal among rectifiable arcs joining given endpoints.

3.2. Uniqueness of short paths. Concerning uniqueness, it is clear that the
convexity condition of L should be strenghtened.

Let us agree to call L nondegenerate if, given A,B ∈ H(n), the existence of
λ ∈ (0, 1) such that the inequality of the convexity condition turns into an equality,
implies that there exists s ≥ 0 such that A = sB. In other words, if

L(λA+ (1− λ)B) = λL(A) + (1− λ)L(B)

for some λ ∈ (0, 1), then A = sB for some s ≥ 0. This is a notion of nondegeneracy
outside lines.

The other notion at play here is the strongest notion of strict convexity of L, which
of course means that if the equality above holds for some λ ∈ (0, 1), then A = B. A
simple example of a strictly convex Lagrangian is the energy functional, given by the
square of the Frobenius norm on H(n).

Remark 3.7. Note that strict convexity implies nondegeneracy, but the notion
of nondegeneracy is relevant since no linear space norm can be strictly convex. In
fact, it is usual to say that a norm ‖ · ‖ on a linear space is strictly convex when the
weaker condition (nondegeneracy) stated above holds, which due to the homogeneity
of the norm amounts to say that

‖A+B‖ = ‖A‖+ ‖B‖

implies A = sB for some s ≥ 0, and geometrically, is equivalent to the fact that the
unit ball of the normed space has no segments.

We begin with a technical lemma. Recall that if A ∈ H(n), then λ1 (A), . . .,
λn (A) denotes the eigenvalues of A arranged in non-increasing way.

Lemma 3.8. Let X,Y, Z ∈ H(n) be such that eZ = eiXeiY and ‖Z‖ < π. If
λk (X) = rλk (Z) and λk (Y ) = (1 − r)λk (Z) for some r ∈ [0, 1] and every k ∈
{1, . . . , n}, then X = rZ and Y = (1− r)Z.
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Proof. It is enough to show that Z shares an orthonormal basis of eigenvalues with
X and Y . Let µ be the largest eigenvalue of |Z|, and let ξ be an unitary eigenvector
of Z such that |Z|ξ = ‖Z‖ξ = µξ. Consider the unit sphere Sn−1 ⊂ Cn and the maps
α, β : [0, 1]→ Sn−1 given by α(t) = eitZξ,

β(t) =
{

e2itY ξ if t ∈ [0, 1/2]
e2i(1/2−t)XeiY ξ if t ∈ [1/2, 1]

.

In particular, α and β have the same extreme points. A simple computation shows
that, with respect to the natural Riemannian structure, Long(α) = µ and Long(β) ≤
µ. But, since

α̈(t) = eitZ(−Z 2)ξ = −eitZ |Z|2ξ = −‖Z‖2eitZξ = −‖Z‖2α(t)

and Long(α) = ‖Z‖ < π, then α is the unique short geodesic of the sphere Sn−1

joining ξ with eiZξ. So, Graph(α) = Graph(β) and ξ is also an eigenvalue of X
and Y . Iterating this procedure, we can conclude that X, Y and Z share a common
orthonormal basis of eigenvalues.

Theorem 3.9. Assume that L is strictly convex. Let X,Y, Z ∈ H(n) be such that
eiZ = eiXeiY and ‖X‖ ≤ π, ‖Y ‖ ≤ π and ‖Z‖ < π. Consider the geodesic segment
γ : [0, b] → U(n) defined by γ(t) = eitZ/b, and the polygonal P : [0, 1] → U(n)defined
by {

ei
t

t0
X if t ∈ [0, t0]

eiXei
t−t0
b−t0

Y if t ∈ [t0, b]
.

for some t0 ∈ (0, b). If S(P ) = S(γ) then X = t0
b Z and P = γ.

Proof. By Proposition 2.1, there exist unitary operators U and V such that

eiZ = ei(UXU
∗+V Y V ∗) and |Z| ≤ |UXU∗ + V Y V ∗| ,

and by the computations made in Proposition 3.3 (Equation (3.2))

S(P ) = t0 L
(
X

t0

)
+ (b− t0)L

(
Y

b− t0

)
.

Then, using the properties of L, the hypothesis S(P ) = S(γ) implies that

S(γ) = S(P ) = t0 L
(
X

t0

)
+ (b− t0)L

(
Y

b− t0

)
= b

(
t0
b
L
(
UXU∗

t0

)
+
b− t0
b
L
(
V Y V ∗

b− t0

))
≥ bL

(
UXU∗ + V Y V ∗

b

)
≥ bL

(Z
b

)
= S(γ).

On one hand, this implies that Z = UXU∗+V Y V ∗. Indeed, if W = UXU∗+V Y V ∗

then |Z| ≤ |W |. But the above chain of identities implies that L(Z) = L(W ), and
(P2) in Proposition 3.1 implies that|Z| = |W |. Hence, 0 ≤ |Z| = |W | < π. Since
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eiZ = ei(UXU
∗+V Y V ∗) we get the desired equality. On the other hand, since L is

strictly convex if r = t0/b then

rZ = UXU∗ and (1− r)Z = V Y V ∗.

Now, by Lemma 3.8 we obtain that X = UXU∗ and Y = V Y V ∗ which concludes the
proof.

Theorem 3.10. Assume that L is strictly convex. Let Z ∈ H(n) be such that
‖Z‖ < π. Then, the geodesic segment δ : [0, b] → U(n) defined by γ(t) = UeitZ/b is
the unique piecewise C1 curve in U(n) joining U to V = UeiZ , and S(δ) = bL(Z/b).

Proof. Without lost of generality we can assume that U = 1. Suppose that α is
any short, piecewise smooth curve joining 1 to eiZ . Let t0 ∈ (0, 1) and let α(t0) =
eiX = eiZe−iY , with ‖Y ‖ ≤ π, ‖X‖ ≤ π. Consider the polygonal P : [0, b] → U(n)
defined by {

ei
t

t0
X if t ∈ [0, t0]

eiXei
t−t0
b−t0

Y if t ∈ [t0, b]
.

Then, by Proposition 3.3 and Theorem 3.5 applied to each segment,

S(γ) ≤ S(P ) ≤
∫ t0

0

L(α̇) dt+
∫ b

t0

L(α̇) dt = S(α) = S(γ),

Hence S(γ) = S(P ), and by Theorem 3.9 we get that X = t0
b Z.

This settles Problem 2 when the Lagrangian is strictly convex: the geodesic seg-
ments are optimal and unique as functions. Regarding the second question of that
problem, we have the following result, that settles this poblem when the Lagrangian is
nondengenerate (for instance, if L is a strictly convex norm on a linear space, Remark
3.7): in this case, geodesic segments are optimal and unique modulo a reparametriza-
tion of the path, that is, they are unique in a geometrical sense.

Theorem 3.11. Assume that L is nondegenerate. Let Z ∈ H(n) be such that
‖Z‖ < π. Then, if α : [0, b] → U(n) is an optimal path of the minimization problem
given by L with given endpoints U, V , α must be a reparametrization of the geodesic
segment γ : [0, b]→ U(n) defined by γ(t) = UeitZ/b.

Proof. We assume that U = 1 and V = eiZ . Let t0 ∈ (0, 1) and let α(t0) = eiX =
eiZe−iY , with ‖Y ‖ ≤ π, ‖X‖ ≤ π. Arguing as in the proof of Theorem 3.9, convexity
of L and minimality of α imply that Z = UXU∗ + V Y V ∗. Now, nondegeneracy of L
implies also that there exists s ≥ 0 such that

UXU∗

t0
= s

V Y V ∗

b− t0
.

Now we take s0 = st0
b−t0 ≥ 0 and r = (1 + s0)−1. Note that r ∈ [0, 1] and also that

rZ = UXU∗, (1 − r)Z = V Y V ∗. Invoking once again Lemma 3.8, it follows that
X = UXU∗, Y = V Y V ∗. Thus α(t0) = eirZ and then α must be a reparametrization
of the geodesic segment γ.

Regarding uniqueness of paths when ‖U−V ‖ = 2 (or equivalently, when V = UeiZ

and ‖Z‖ = π), this property is not expected since taking n = 1, U = 1, V = −1 shows
that there are two geodesic segments in the circumference (= U(1)) joining U, V , and
the situation worsens as n gets bigger.
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4. Applications to rectifiable distances in U(n) and angular metrics in
the Grassmann manifold. In this section, we focus in the particular case where
L is a unitarily invariant norm. In that case the action S defines a length of curves
and the length of the optimal path defines a distance in U(n). We will translate the
optimality results to this context and we will prove that the optimal paths are the
unique2 paths of minimal length provided the norm is strictly convex (nondegenerate
in the terminology of the previous section).

4.1. Unitarily invariant norms and symmetric gauge functions. One of
the most relevant properties of the uniform norm of matrices is the following: given
two unitary matrices U and V , then ‖UTV ‖ = ‖T‖. This property is shared by many
other norms defined in Mn(C).

Definition 4.1. A norm ‖| · ‖| defined in Mn(C) is called unitarily invariant
if for every matrix T and every pair of unitary operators U and V it holds that
‖| UTV ‖| = ‖| T ‖| .

Remark 4.2. Note that the norm of a matrix T depends on the singular values
of T whenever the norm is unitarily invariant. In particular, ‖| T ‖| = ‖| |T | ‖| .

Examples 4.3.

• The spectral norm: ‖T‖ = supx∈Cn
‖Tx‖Cn

‖x‖Cn
= s1(T );

• The Schatten norms: ‖T‖pp =
∑n
j=1 sj(T )p = tr |T |p;

• The Ky-Fan norms: ‖T‖(k) =
∑k
j=1 sj(T ).

Now, if we consider the function Φ : Rn → R defined by Φ(x) = ‖| diag(x) ‖| ,
where diag(x) denotes the diagonal matrix whose diagonal contains the vector x, then:

1. Φ is a norm;
2. Φ(x) = Φ(|x|);
3. Φ(x) = Φ(xσ) for every permutation xσ of the original vector x;

Definition 4.4. A function Φ : Rn → R is called symmetric gauge whenever it
satisfies the above listed properties (1), (2) and (3). We resume some fundamental
results in the next theorem for future references:

Theorem 4.5. Given a symmetric gauge function Φ on Rn, consider a function
on Mn(C) given by

‖| T ‖| Φ = Φ(s(T )) .

This formula defines a unitarily invariant norm on Mn(C). Conversely, given any
unitarily invariant norm ‖| · ‖| , define a function on Rn by

Φ ‖| · ‖| (x) = ‖| diag(x) ‖| .

This defines a symmetric gauge function on Rn. From now on, a unitarily invariant
norm will be denoted by ‖ · ‖φ, where φ is the symmetric gauge function associated
with the norm. A fairly complete review of the theory of unitarily invariant norms
can be found in Bhatia’s book [5]. For analogous results in the context of compact
operators, the reader is referred to Simon’s book [13] or Gohberg and Krein’s book
[7].

2Except by possibles changes in the parametrization
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4.2. The unitary group. The group of unitary matrices U(n) is a smooth
manifold in the uniform norm of Mn(C), and it is in fact a real Lie subgroup of
the full linear group. Its Lie algebra can be identified with iH(n) with the usual
commutator, and if γ : [a, b] → U(n) is a C1 curve, then γ∗(t)γ̇(t) ∈ iH(n) for any
t ∈ [a, b].

What we are interested in here is in distances defined in U(n) by means of different
ways of measuring lengths of curves.

Definition 4.6. Let ‖ · ‖φ be a unitarily invariant norm. The rectifiable length
of a piecewise smooth curve γ : [a, b]→ U(n) associated to ‖ · ‖φ is

Lφ(γ) =
∫ b

a

‖γ̇‖φ,

and the rectifiable distance between U, V ∈ U(n) is

dφ(U, V ) = inf {Lφ(γ)| γ : [a, b]→ U(n) is piecewise smooth and joins U to V in U(n)} .

The function dφ is in fact a distance, since ‖U − V ‖φ ' dφ(U, V ) for any U, V ∈
U(n). One of the main features of this metric is that it is invariant for the action of
the unitary group U(H), in fact it is a bi-invariant metric

dφ(UV1W,UV2W ) = dφ(V1, V2)

for U,W, V1, V2 ∈ U(H).

4.2.1. Minimality of geodesics. As a direct consequence of Theorem 3.5 we
obtain

Theorem 4.7. Let U, V ∈ U(n) and V = UeiZ , with ‖Z‖ ≤ π, Z ∈ H(n).
Then, the curve δ(t) = UeitZ is shorter than any other piecewise smooth curve γ in
U(n) joining U to V , when we measure them with the norm ‖ · ‖φ. In particular,
dφ(U, V ) = ‖Z‖φ.

Remark 4.8. This result generalizes [4, Theorem 3.2] for the p-norms (p ≥ 2),
where it was proved using a particular variational calculus for the p-norms, see also
[10].

The uniqueness follows from Theorem 3.11.
Theorem 4.9. Assume that the norm ‖ · ‖φ is strictly convex, and let U, V,W ∈

U(n) be such that

dφ(U, V ) = dφ(U,W ) + dφ(W,V ),

and d∞(U, V ) < π (equivalently, ‖U − V ‖ < 2). Then U, V,W are aligned in U(n),
that is, there exists t0 ∈ [0, 1] and Z ∈ H(n) with ‖Z‖ < π such that

V = UeiZ , while W = Ueit0Z .
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4.3. The Grassmannian. The Grassmannian Gn is the set of subspaces of Cn,
which can be identified with the set of orthogonal projections inMn(C). If we consider
in Mn(C) the topology defined by any of all the equivalent norms, the Grassmann
space endowed with the inherited topology becomes a compact set. However, it is not
connected. Indeed, it is enough to consider the trace tr, which is a continuous map
defined on the whole space Mn(C), and restricted to Gn takes only positive integer
values. In particular, this shows that the connected components of Gn are the subsets
Gm,n defined as:

Gm,n := {P ∈ Gn : tr(P ) = m}.

Each of these components is a submanifold of Mn(C) [17, p.129], and connected
components are given by the unitary orbit of a given projection P such that tr(P ) =
m:

Gm,n = {UPU∗ : U ∈ U(n)}.

The tangent space at a point P ∈ Gm,n can be identified with the subspace of P -
codiagonal Hermitian matrices, i.e.

T
P

(Gm,n) = {X ∈ H(n) : X = PX +XP} .

In particular note that T
P

(Gm,n) has a natural complement NP , which is the space of
Hermitian matrices that commute with P , that is, the P -diagonal Hermitian matrices.
The decomposition in diagonal and codiagonal matrices defines a normal bundle, and
leads to a covariant derivative

∇V Γ(P ) = ΠTP ||NP

d

dt
Γ(α(t))

∣∣∣∣
t=0

, (4.1)

where Γ is a vector field along the curve α : (−ε, ε) → Gm,n that satisfies α(0) = P

and α̇(0) = V . So, we have a notion of parallelism, and the geodesics in this sense
are described by the following theorem:

Theorem 4.10 (Porta-Recht [12]). The unique geodesic at P with direction X

is:

γ(t) = e itXPe−itX .

As the unitary group acts transitively in these components via U · P = UPU∗,
they are also homogeneous spaces of U(n). They can be distinguished from other
homogeneous submanifolds of U(n), because the map

P 7→ SP = 2P − 1

embeds them in U(n), and the map S is two times an isometry. The images SP are
symmetries, i.e. matrices that satisfy S∗P = SP = S−1

P .
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4.3.1. Finsler metrics on the Grassmannian. For a given symmetric norm,
the Grassmann space carries the Finsler structure given by

‖X‖P = ‖X‖φ

for X ∈ TPG, and with this structure, the Grassmann component {UPU∗ : U ∈ U(n)}
is isometric (modulo a factor 2) to the orbit of symmetries {USPU∗ : U ∈ U(n)}. In
the particular case when ‖ · ‖φ is the Frobenius norm, this connection is the Levi-
Civita connection of the metric, since the P -diagonal matrices are the orthogonal
complement of the P -codiagonal matrices with respect to this Riemannian metric.

A straightworward computation shows that, if X = XP + PX, then eiXSP =
SP e

−iX . This simple observation enables to use our results in the unitary group, to
prove minimality of geodesics in the Grassmann manifold:

Theorem 4.11. If P,Q ∈ Gm.n then there exists X ∈ TPG such that Q =
eiXPe−iX and ‖X‖ ≤ π

2 , unique when ‖P −Q‖ < 1. The geodesic γ(t) = eitXPe−itX

is shorter than any rectifiable path in G joining P,Q and

dφ(P,Q) = ‖XP − PX‖φ = ‖X‖φ.

If the norm is strictly convex and ‖P −Q‖ < 1, the geodesic is the unique short path
joining P,Q ∈ G.

Proof. The existence of X follows from Halmos [8] or Davis and Kahan [6]. Since
e2iX = SQSP , if ‖Q− P‖ < 1 this X is unique. Since

Sγ(t) = 2γ(t)− 1 = eitXSP e
−itX = e2itXSP = SP e

−2itX ,

and S is two times an isometry, the minimality of γ follows from Theorem 4.7, and
the same applies to the uniqueness in the strictly convex case. Finally, Lφ(γ) =
‖XP − PX‖φ, and on the other hand, since PXP = 0 then

|XP − PX|2 = |XP + PX|2 = |X|2,

thus dφ(P,Q) = Lφ(γ) = ‖|XP − PX|‖φ = ‖|X|‖φ = ‖X‖φ.
Remark 4.12. In the situation of the previous theorem, it is not hard to see that

if k ∈ Z, then PX2k = X2kP , PX2k+1 = −PX2k+1. Then P |X| = |X|P = |XP |
and (1− P )|X| = |X|(1− P ) = |PX|; moreover if f is a Borel function defined in a
neighbourhood of σ(X), and f is even, then Pf(X) = f(X)P and if f is odd, then
Pf(X) = f(X)(1− P ). A straightforward computation gives

Q = P cos2X + (1− P ) sin2X − i

2
P sin 2X +

i

2
(1− P ) sin 2X,

and then |PQ|2 = PQP = P cos2X, which leads to |PQ| = P cosX = cos |XP |, and
likewise |QP | = (1 − P ) cosX = cos |PX|. Thus if Y ∈ TpG is any other matrix as
X, it follows that P cosX = P cosY or equivalently,

cos |XP | = |PQ| = cos |Y P |.



14 J. ANTEZANA, G. LAROTONDA, AND A. VARELA

4.4. The angular metrics. The notion of principal angles, introduced by Jor-
dan in [9] at the end of the nineteenth century, has played an important role in many
areas of analysis. Given two unitary vectors x, y ∈ Cn, it is well-known that one way
to compute the angle between them is

θ(x, y) = arccos | 〈x, y 〉 | = arccos ‖PxPy‖

where Px (resp. Py) is the orthogonal projections onto the subspace generated by x

(resp. y), and ‖·‖ denotes the spectral norm. Jordan’s definition of principal angles is a
natural extension of this expression. LetM and T be two m-dimensional subspaces of
Cn, and let PM and PT be the orthogonal projections ontoM and T respectively. The
principal angles betweenM and T are the angles θ1(M, T ), . . . , θm(M, T ) ∈ [0, π/2)
whose cosines are the m greatest singular values of PMPT .

In [18] Li, Qiu, and Zhang used the principal angles to define metrics in the
components of Gn. Given a symmetric norm ‖ · ‖φ, they define for P,Q ∈ Gm,n the
following distance:

ρφ(P,Q) = ‖ arccos |PQ|‖φ.

These distances are called angular metrics, because if φ is the symmetric gauge func-
tion associated to ‖ · ‖φ then

ρφ(P,Q) = φ(θ1(M, T ), . . . , θm(M, T ), 0, . . . , 0).

where M = R(P ) and T = R(Q). The definition of these metrics was motivated
not only by pure mathematics but also by engineering applications. For example,
in robust control, a linear time-invariant system can be described by a subspace
valued frequency function, and the description of an uncertain system needs a suitable
distance measure between subspaces. The reader is referred to [18], where other
motivations and applications of these metrics are described.

A legitimate question at this point, is if these distances are related to an infinites-
imal structure on the manifold G, that is, if the angular distance among P,Q ∈ G can
be computed as the infima of the lengths of the rectifiable arcs joining P,Q. Note
that, by Remark 4.12, if X is as in Theorem 4.11, then the angular distance among
P,Q can be computed as

ρφ(P,Q) = ‖ arccos |PQ|‖φ = ‖XP‖φ

and this computation does not depend on the particular X. Then, one can be tempted
to endow the Grassmannian with the Finsler metric (i.e. tangent norm) given by
‖X‖P = ‖XP‖φ for X ∈ TPG. The problem with this definition is that it is not clear
how to extended this definition to the whole Mn(C) in order to obtain an unitarily
invariant norm there.

To this end, it suffices to consider the case m ≤ n/2: let φ be the symmetric
gauge function associated to ‖ ·‖φ (see Theorem 4.5), and define ‖ ·‖ψ in the following
way:

‖A‖ψ = φ

(
s1 (A) + s2 (A)

2
, . . . ,

s2m−1 (A) + s2m (A)
2

, 0, . . . , 0
)
, (4.2)
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where s1 (A),. . .,sn (A) denotes the singular values of A counted with multiplicity and
ordered in non-increasing way3. Straightforward computations show that ‖ · ‖ψ is a
symmetric norm.

The following will be extremely useful to connect our Finsler metric with the
rotation angles:

Theorem 4.13 (Davis-Kahan [6]). Let P,Q ∈ Gm,n, and denote M = R(P ) and
T = R(Q). Then, if X ∈ H(n) is P -codiagonal and Q = eiXPe−iX , its spectrum
counted with multiplicity is(

P(H)θ1(M, T ), . . . ,P(H)θm(M, T ), 0 . . . , 0
)
.

Using this theorem we get the following result:
Theorem 4.14. Let ‖·‖φ be a symmetric norm, and ρφ its corresponding angular

metric in Gm,n. Then, there exists an induced symmetric norm ‖ · ‖ψ such that the
corresponding rectifiable distance dψ coincides with ρφ.

Proof. Consider the rectifiable distance dψ associated to the norm given in (4.2),
and take P,Q,X as in Theorem 4.11. Then

dψ(P,Q) = ‖X‖ψ = φ

(
s1 (Z) + s2 (Z)

2
, . . . ,

s2m−1 (Z) + s2m (Z)
2

, 0, . . . , 0
)

= φ
(
θ1(M, T ), . . . , θm(M, T ), 0 . . . , 0

)
= ρφ(P,Q) ,

by Theorem 4.13, which concludes the proof.
Remark 4.15. This same result, with other proof, was obtained by Neretin in

[11].

5. Compact operators. The results of the previous sections can be extended to
the infinite dimensional setting as follows. LetH be a complex separable Hilbert space,
B(H) the algebra of bounded operators with the supremum norm, K(H) the algebra of
compact operators, U(H) the group of unitary operators. Let ‖·‖φ : B(H)→ R∪{∞}
be a symmetric norm, that is a norm such that

‖AXB‖φ ≤ ‖A‖‖X‖φ‖B‖ (5.1)

for A,X,B ∈ B(H) (both sides can equal ∞). In particular, it is unitarily invariant,
thus it only depends on the singular values of the operator, and as in Theorem 4.5,
there is a function φ : R∞+ → R≥0 invariant under permutations and convex, related
to this norm; the relationship is somewhat subtle so we refer the reader to Simon’s
book [13] for full details on these symmetrically normed ideals.

Let I ⊂ K(H) stand for the ideal of operators with finite norm, which will be
assumed to be complete with respect to its norm, and let Uφ = {u ∈ U(H) : u− 1 ∈
I}. This is a Banach-Lie group, whose Banach-Lie algebra can be readily identified
with the anti-Hermitian part of I, that we will denote with iIH . A straightforward
computation using the functional calculus and the fact that I is an ideal shows that
if ‖Z‖ ≤ π is self-adjoint and eiZ = U , then Z ∈ I.

3The arithmetic mean can be replaced by any positive mean
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5.1. The special unitary groups. The length functional on Uφ is defined ac-
cordingly as Lφ(α) =

∫ 1

0
‖α̇‖φ, and the distance dφ is defined as the infima of the

lengths of curves in Uφ joining given endpoints; in order to prove minimality of geodesic
segments, we will need the following extension of Thompson’s formula, its proof can
be found in [2, Theorem 3.2]:

Theorem 5.1. Given X,Y ∈ K(H)h, there is an isometry w ∈ B(H) (w∗w = 1),
and unitary operators U and V such that

ei wXw
∗
ei wY w

∗
= ei U(wXw∗)U∗+i V (wY w∗)V ∗ .

Theorem 5.2. Let U, V ∈ Uφ, Z ∈ I such that V = UeiZ and ‖Z‖ ≤ π. Then,
the curve γ(t) = UeitZ is minimal among rectifiable curves α ⊂ Uφ joining U, V , with
respect to the distance induced by the length Lφ, and dφ(U, V ) = ‖Z‖φ. This curve is
unique if the norm is strictly convex and ‖U − V ‖ < 2 (equivalently, ‖Z‖ < π).

Proof. If Z ∈ I is such that eiZ = eiXeiY and ‖Z‖ ≤ π (where we can assume that
X,Y ∈ I), then eiwZw

∗
= eiwXw

∗
eiwY w

∗
for some isometry w ∈ B(H) by Theorem

5.1. With the same proof as Corollary 2.2, we obtain

|wZw∗| ≤ |U(wXw∗)U∗ + i V (wY w∗)V ∗|.

Due to (5.1), it follows that

‖Z‖φ = ‖w∗wZw∗w‖φ ≤ ‖wZw∗‖φ ≤ ‖X‖φ + ‖Y ‖φ

since w is an isometry thus ‖w‖ = 1. Now the rest of the proof of minimality of
segments follows as in Section 3. The uniqueness when the norm is strictly convex
can be proved invoking Theorem 5.1, and arguing as in the proof of Theorem 3.11.

5.2. The restricted Grassmannians. The same considerations hold for the
special Grassmannian manifold, whose components can be regarded as unitary orbits
of self-adjoint projections P ∈ B(H), with the action of these special unitary groups:

Gφ(P ) = {UPU∗ : U ∈ Uφ}.

Since U − 1 ∈ I, then the orbit is contained in the affine space P + I. Then tangent
spaces are identified with

TPGφ(P ) = {X ∈ IH : XP + PX = X}.

A well-known result of Halmos [8] says that if P,Q ∈ B(H) are self-adjoint projections
whose ranges have the same dimension (including the posiblity of +∞), and the same
holds for the kernels of P,Q, then there exists a P -codiagonal X such that ‖X‖ ≤ π

2

and Q = eiXPe−iX . Since Gφ ⊂ P + I, it is easy to check that SQSP ∈ Uφ. Then,
e2iX = SQSP is also in Uφ, and it follows that X ∈ I.

Corollary 5.3. If P,Q ∈ Gφ(P ) then there exists X ∈ TPGφ(P ) such that
Q = eiXPe−iX and ‖X‖ ≤ π

2 , unique when ‖P − Q‖ < 1. The geodesic γ(t) =
eitXPe−itx is shorter than any rectifiable path in Gφ(P ) joining P,Q and dφ(P,Q) =
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‖XP − PX‖φ = ‖X‖φ. If the norm is strictly convex and ‖P −Q‖ < 1, the geodesic
is the unique short path joining P,Q ∈ Gφ(P ).

Remark 5.4. When I is the ideal of Hilbert-Schmidt operators, the special Grass-
mannian defined above is known as the Sato Grassmannian or the restricted Grass-
mannian. The proof of minimality of one-parameter groups in this Riemann-Hilbert
setting was given in [1] with a different technique.
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